Process for manufacturing effervescence components

Cleaning compositions for solid surfaces – auxiliary compositions – Cleaning compositions or processes of preparing – Heterogeneous arrangement

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C510S446000, C510S509000, C510S513000, C510S533000

Reexamination Certificate

active

06683043

ABSTRACT:

TECHNICAL FIELD
The present invention is applicable to compositions which need to be dissolved in an aqueous medium in an easy and fast way. This technology may found application in various fields, e.g., in detergent compositions like laundry detergent compositions, soaking detergent compositions, dish washing compositions or any other compositions for household applications, in pharmaceutical preparations, dental preparations, food and the like. More particularly, the present invention relates to granular detergent compositions intended for the cleaning of fabrics.
BACKGROUND OF THE INVENTION
A problem associated to conventional granular compositions which are to be used by the consumer after having been diluted typically with water, is their tendency towards poor dissolution or poor dispensing. That tendency has been exacerbated by the recent trend in for example the detergent industry towards higher bulk density granular compositions and towards granular detergent compositions which have a higher content of active ingredients. Granular detergent compositions of high bulk densities ranging from 650 to 1100 kg/m3 are attractive to consumers but not satisfactorily dissolved into an aqueous medium.
Another difficulty with detergent compositions is that they are not easily flushed from the dispenser drawer of a washing machine. Similar problems are encountered when using such granular detergent compositions in a dosing device in the washing drum.
It is known to use citric acid and carbonate in powder compositions to promote dissolution of for example pharmaceutical preparations and detergents by effervescence.
An issue with such compositions containing particulate acid and carbonate can be the poor storage stability when they are exposed to moisture, leading to a reduced effervescence. Therefore, it is suggested in for example EP 534525-A, to use large particle size citric acid, which is said to be stable when exposed to moisture.
However, the inventors have now surprisingly found that very small particle size acid materials provide improved effervescence. Surprisingly, they found that the small particle size acid can be used in compositions without incurring stability problems of the effervescence system, in contrast to the teaching of the prior art, whilst providing more efficient and rapid effervescence. They have found that the incorporation of very small particle size acid sources results not only in an improved dispensing/dissolution compared to larger particle size acids, but also in an improved, more rapid sudsing, which may be highly advantages in certain applications. An further improved effervescence performance and more efficient dispensing and/or dissolution and/or sudsing is achieved when the carbon dioxide source is also of a small particle size.
Highly preferred may be that the acid and the carbon dioxide source are in an intimate mixture, preferably in the form of a dry effervescence granule. This not only further improves the stability of the effervescence system, but can also increase the effervescence efficiency, thus resulting in smaller amounts of acid source needed for the desired effervescence, dispensing/dissolution and/or sudsing. Furthermore, the inventors have found that can be advantageous that the effervescence granule is of a large particle size, to obtain a more stable, better effervescing granule.
The inventors have surprisingly found that when small particle size acid sources are used, a stronger and more homogeneous particle can be obtained, thus improving the effervescence performance Furthermore, when a compacted effervescence granule is required, the compaction pressure can be reduced when the small particle size acid source, and optionally small particle size carbon dioxide source, is employed. Such a granule dissolves more rapidly and provides thus an improved effervescing. Additionally, or alternatively, when the granule is made by agglomeration, it has been found to be beneficial that small particle size acids are used; in particular when a binder is used to form the agglomerates the performance characteristics of the effervescence agglomerate have been found to be less effected by the binder when small acid material is incorporated than when larger particle size material is used.
Furthermore, the inventors have found that when a coating comprising a specific alkoxylated alcohol is present on the effervescence component, or one or more ingredients thereof, this not only increases the stability of the effervescence component when exposed to moisture, but also suprisingly enhances the production of long lasting suds of high volume.
The enhanced production of long lasting suds of high volume by the coated effervescence component also has the added benefit of giving a clear signal to the user that the detergent composition comprising the coated effervesence component has dissolved and is now, or is ready to start, cleaning soiled articles. This is especially applicable in hand washing applications when the introduction of soiled articles into the washing cycle may not be optimal until the detergent composition has dissolved.
Also, the selected alkoxylated alcohol mentioned above may act as a suds suppresser during later stages of the washing cycle, such as during rinsing, and hence possess a dual role in the washing cycle. The specific alkoxylated alcohol, by acting in this dual manner, has a good impact on formulation space, allowing more room for other optional detergent components, since it helps to negate the need for two separate detergent composition constituents for suds production and suppression.
SUMMARY OF THE INVENTION
The present invention provides an effervescence component comprising an acid source and a carbon dioxide source, wherein at least 75% of said acid source has a particle size from 0.1 to 150 microns, more preferably from 0.5 to 100 microns.
In one embodiment, it is highly preferred that the carbon dioxide source has a volume median particle size from 5 to 375 microns, whereby preferably at least 60% has a particle size of from 1 to 425 microns, or even preferably a volume median particle size from 10 to 250 microns, whereby preferably at least 60% has a particle size of from 1 to 375 microns. In one preferred embodiment the carbon dioxide source has a particle size similar to the acid source, preferably such that at least 60% or even 75% of the carbon dioxide source has a particle size from 1 to 150 microns, more preferably from 1 to 100 microns.
In a highly preferred embodiment, the acid source and the carbon dioxide source are present in an intimate mixture with one another, preferably in a granule.
The invention also provides a process for manufacturing such a granule comprises the steps of:
mixing the acid source and the carbon dioxide source and optionally a binder to form an mixture,
then submitting the mixture to a granulation step, preferably comprising an compaction and/or agglomeration step to form a compacted and/or agglomerated mixture.
Preferably the acid source is a particulate material which is first ground to obtain the acid source of the invention, prior to mixing with the carbon dioxide source. The carbon dioxide source may also be obtained by grinding larger particle size material.
The present invention also encompasses compositions containing the effervescence component. In a preferred embodiment, the compositions are solid or non-aqueous detergent compositions, including laundry, pre-treatment and dish washing compositions, preferably solid compositions in the from of granules, tablet or bar.
Additionally, the present invention also encompasses detergent compositions comprising a coated effervescence component, where the coating comprises an alkoxylated alcohol having an alkoxylation degree of at least 20.
DETAILED DESCRIPTION OF THE INVENTION
Acid Source
Suitable acid sources herein are capable of providing solid organic, mineral or inorganic acids, and the sources are thereto preferably in the form of acids, salts or derivatives thereof or a mixture thereof. Derivatives in particular include e

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for manufacturing effervescence components does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for manufacturing effervescence components, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for manufacturing effervescence components will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3202459

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.