Process for manufacture of reacted metal nanoparticles

Specialized metallurgical processes – compositions for use therei – Processes – Producing solid particulate free metal directly from liquid...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C075S343000, C075S367000

Reexamination Certificate

active

06682584

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
Particles, and particularly aluminum or copper metal particles find a wide range of use as fillers, active media, explosives, catalysts, chemically active materials, absorbents, chemical analysis, magnetically sensitive materials, decorative materials, taggants, and reflective material. The present invention relates to the field of aluminum or copper metal nanoparticle manufacture and apparatus for the manufacture of aluminum or copper nanoparticles, and particularly for the manufacture of aluminum or copper particles that have been reacted during manufacture, particularly surface reacted or surface coated.
2. Background of the Art
Many processes are available for the manufacture of small particles and especially small metal particles. These processes cover a wide range of technologies and exhibit a wide range of efficiencies. Some processes produce dry particles, while other processes produce particles in liquid dispersions. Processes for coating particles usually comprise immersing particles in solutions and drying them or more recently, supporting particles in a fluidized bed and introducing liquids into the fluidized system to coat the supported particles, as described in U.S. Pat. No. 5,962,082. Such macroprocesses are not effective in coating extremely small particles, especially those on the order of nanometers.
Numerous references have appeared describing use of the gas evaporation technique to produce ultrafine metal powders, especially magnetic metal/metal oxide powders (often referred to as magnetic pigments). These appear to exclusively refer to a dry process and do not involve contact with liquids. Yatsuya et al., Jpn. J. Appl. Phys., 13, 749 (1974), involves evaporation of metals onto a thin film of a hydrocarbon oil (VEROS technique) and is similar to Kimura (supra). Nakatani et al., J. Magn. Magn. Mater., 65, 261 (1987), describe a process in which surface active agents stabilize a dispersion of a ferromagnetic metal (Fe, Co, or Ni) vaporized directly into a hydrocarbon oil to give a ferrofluid using a metal atom technique. The metal atom technique requires high vacuum (pressures less than 10
−3
torr) such that discrete metal atoms impinge onto the surface of a dispersing medium before the metal atoms have a chance to contact a second species in the gas phase. In this metal atom process, nucleation and particle growth occur in the dispersing medium, not in the gas phase. Thus, particle size is dependent on the dispersing medium and is not easily controlled. Additionally, U.S. Pat. No. 4,576,725 describes a process for making magnetic fluids which involves vaporization of a ferromagnetic metal, adiabatic expansion of the metal vapor and an inert gas through a cooling nozzle to condense the metal and form small metal particles, and impingement of the particles at high velocity onto the surface of a base liquid.
Kimura and Bandow, Bull. Chem. Soc. Japan, 56, 3578 (1983) disclose the non-mechanical dispersing of fine metal particles. This method for prepares colloidal metal dispersions in nonaqueous media also uses a gas evaporation technique. General references by C. Hayashi on ultrafine metal particles and the gas evaporation technique can be found in
Physics Today
, December 1987, p. 44 and J. Vac. Sci. and Tech., A5, p. 1375 (1987).
EPA 209403 (Toyatoma) describes a process for preparing dry ultrafine particles of organic compounds using a gas evaporation method. The ultrafine particles, having increased hydrophilicity, are taught to be dispersible in aqueous media. Particle sizes obtained are from 500 Angstroms to 4 micrometers. These particles are dispersed by ultrasound to provide mechanical energy that breaks up aggregates, a practice that in itself is known in the art. The resulting dispersions have improved stability towards flocculation.
Other references for dispersing materials that are delivered to a dispersing medium by means of a gas stream include U.S. Pat. No. 1,509,824, which describes introduction of a molecularly dispersed material, generated either by vaporization or atomization, from a pressurized gas stream into a liquid medium such that condensation of the dispersed material occurs in the liquid. Therefore, particle growth occurs in the dispersing medium, not in the gas phase, as described above. Furthermore, the examples given are all materials in their elemental form and all of which have appreciable vapor pressures at room temperature.
U.S. Pat. No. 5,030,669 describes a method consisting essentially of the steps: (a) vaporizing a nonelemental pigment or precursor to a nonelemental pigment in the presence of a nonreactive gas stream to provide ultrafine nonelemental pigment particles or precursor to nonelemental pigment particles; (b) when precursor particles to a nonelemental pigment are present, providing a second gas capable of reacting with the ultrafine precursor particles to a nonelemental pigment and reacting the second gas with the ultrafine precursor particles to a nonelemental pigment to provide ultrafine nonelemental pigment particles; (c) transporting the ultrafine nonelemental pigment particles in said gas stream to a dispersing medium, to provide a dispersion of nonelemental pigment particles in the medium, the particles having an average diameter size of less than 0.1 micrometer; wherein the method takes place in a reactor under subatmospheric pressure in the range of 0.001 to 300 torr.
U.S. Pat. No. 5,106,533 provides a nonaqueous dispersion comprising pigment particles having an average size (diameter) of less than 0.1 micrometer dispersed in an organic medium. That invention provides an aqueous dispersion comprising certain classes of inorganic pigment particles having an average size (diameter) of less than 0.1 micrometer dispersed in a water or water-containing medium The dispersions require less time for preparation, are more stable, have a more uniform size distribution, a smaller number average particle diameter, fewer surface asperities, and avoid contamination of dispersed material due to the presence of milling media and the wear of mechanical parts, these problems having been noted above for dispersions prepared by conventional methods employing mechanical grinding of particulates. Additionally, no chemical pretreatment of the pigment is required in order to achieve the fine particle sizes obtained in the final dispersion. The pigments of the dispersions are found to have narrower size distributions (standard deviations generally being in the range of ±0.5 x, where x is the mean number average particle diameter), are more resistant to flocculation (i.e., the dispersions are stable, that is they are substantially free of settled particles, that is, no more than 10% of the particles settle out for at least 12 hours at 25° C.), and demonstrate superior overall stability and color as demonstrated by lack of turbidity, by increased transparency, and by greater tinctorial strength, compared to mechanically dispersed pigment dispersions. Furthermore, the method requires no mechanical energy, such as ultrasound, to break up aggregates. Aggregates do not form since there is no isolation of dry ultrafine pigment particles prior to contacting the dispersing medium. The dispersions of any organic or inorganic pigment or dispersion that can be generated from a pigment precursor, are prepared by a gas evaporation technique which generates ultrafine pigment particles. Bulk pigment is heated under reduced pressure until vaporization occurs. The pigment vaporizes in the presence of a gas stream wherein the gas preferably is inert (nonreactive), although any gas that does not react with the pigment may be used. The ultrafine pigment particles are transported to a liquid dispersing medium by the gas stream and deposited therein by bubbling the gas stream into or impinging the gas stream onto the dispersing medium.
U.S. Pat. No. 6,267,942 describes a process for manufacture of spherical silica particles. Silica gel particles to be dispersed in a mixed solution of

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for manufacture of reacted metal nanoparticles does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for manufacture of reacted metal nanoparticles, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for manufacture of reacted metal nanoparticles will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3247453

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.