Single-crystal – oriented-crystal – and epitaxy growth processes; – Processes of growth from liquid or supercritical state – Having growth from a solution comprising a solvent which is...
Reexamination Certificate
2000-10-30
2002-08-27
Kunemund, Robert (Department: 1765)
Single-crystal, oriented-crystal, and epitaxy growth processes;
Processes of growth from liquid or supercritical state
Having growth from a solution comprising a solvent which is...
C117S069000, C117S070000, C117S075000, C117S921000, C117S947000
Reexamination Certificate
active
06440213
ABSTRACT:
BACKGROUND OF THE INVENTION
This invention relates to a process for making non-hydrolytic surfactant capped nanocrystals. More particularly, it relates to a process for making non-hydrolytic surfactant capped nanocrystals of transition metal oxides using a single precursor approach, and to the nanocrystals made thereby.
The advent of new methods to prepare semiconductor and metal nanocrystals, specifically the injection of molecular precursors into hot organic surfactants, has yielded markedly improved samples with good size control, narrow size distributions, and good crystallinity of individual and dispersable nanocrystals.
1-3
It is of considerable interest to apply these methods to the synthesis of transition metal oxide nanoparticles, which typically are prepared by methods involving water as solvent or reactant.
4-9
Using nonhydrolytic preparations of metal oxide nanocrystals at high temperature in organic surfactants, one observes markedly different properties with respect to defect structure and surface composition. So far, there has been only one example of the solution-based nonhydrolytic synthesis of individual TiO
2
nanocrystals.
10
Metal oxide nanocrystals with nonhydroxylated surfaces are believed to have significant advantages for applications in catalysis, ceramics, energy storage, magnetic data storage, sensors, ferrofluids, etc.
The following references contain useful background information pertaining to this invention.
1. Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc. 1993, 115, 8706-8715.
2. Peng, X.; Wickham, J.; Alivisatos, A. P. J. Am. Chem. Soc. 1998, 120, 5343-5344.
3. Sun, S.; Murray, C. J. Appl. Phys. 1999, 85, 4325-4330.
4. Charles, S. W.; Popplewell, J. Ferromagnetic Materials; Northholland Publishing Co.: Amsterdam, N.Y., Oxford, 1982; Vol. 2.
5. Brinker, C. J.; Scherer, G. W. Sol-Gel Science; Academic Press: San Diego, 1990.
6. Ziolo, R. F.; Giannelis, E. P.; Weinstein, B. A.; O'Horo, M. P.; Ganguly, B. N.; Mehrotra, V.; Russell, M. W.; Huffman, D. R. Science 1992, 257, 219-223.
7. Matijevic, E. Chem. Mater. 1993, 5, 412.
8. Moumen, N.; Pileni, M. P. Chem. Mater. 1996, 8, 1128.
9. Ying, J. Y. Special Issue: Sol-Gel Derived Materials. In Chem. Mater. 1997, 9, 2247-2670.
10. Trentler, T. J.; Denier, T. E.; Bertone, J. F.; Agrawal, A.; Colvin, V. L. J. Am. Chem. Soc. 1999, 121, 1613-1614.
11. Comprehensive coordination chemistry: the synthesis, reactions, properties & applications of coordination compounds, 1st ed.; Pergamon Press: Oxford, England, 1987; Vol. 2, Chapter 15.9.2.
12. Helm, D. v. d.; Merritt, L. L.; Degeilh, R.; MacGillavry, C. H. Acta Crystallogr. 1965, 18, 355-362.
13. Elerman, Y.; Atakol, O.; Svoboda, I.; Geselle, M. Acta Crystallogr. C 1995, 51, 1520-1522.
14. Tamaki, K.; Okabe, N. Acta Crystallogr. C 1996, 52, 1612-1614.
15. Kellner, R.; Prokopowski, P. Anal. Chim. Acta 1976, 86, 175-184.
16. Nolze, G.; Kraus, W. Powder Diffr. 1998, 13, 256-259.
17. Shmakov, A. N.; Kryukova, G. N.; Tsybulya, S. V.; Chuvilin, A. L.; Solovyeva, L. P. J. Appl. Crystallogr. 1995, 28, 141.
18. Jarosch, D. Mineral. Petrol. 1987, 37, 15-23.
19. Neuburger, M. C. Z. Phys. 1930, 67, 845-850.
20. Cullity, B. D. Elements of X-ray Diffraction, 2nd ed.; Addison-Wesley: Reading, Mass., 1978.
21. Bentzon, M. D.; Wonterghem, J. v.; Morup, S.; Tholen, A.; Koch, C. J. W. Philos. Mag. B 1989, 60, 169-178.
22. Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Science 1995, 270, 1335-1338.
23. Chemseddine, A.; Weller, H. Ber. Bunsen-Ges. Phys. Chem. 1993, 97, 636-637.
24. Fleet, M. E. Acta Crystallogr. B 1981, 37, 917-920.
25. Cornell, R. M.; Schwertmann, U. The Iron Oxides-Structure, Properties, Reactions, Occurrence and Uses, 1st ed.; VCH Verlagsgesellschaft: Weinheim, Germany, 1996.
SUMMARY OF THE INVENTION
It is an object of this invention to provide a non-hydrolytic process for the preparation of transition metal oxide nanocrystals.
It is a further object of this invention top provide a non-hydrolytic process for the preparation of transition metal oxide nanocrystals having non-hydroxylated surfaces.
It is a still further object of this invention to provide new and novel transition metal oxide nanocrystals.
These, and other objects are achieved by injecting a solution of a metal cupferron complex of the formula M Cup, wherein M is a transition metal, and Cup is a cupferron, into an amine based coordinating surfactant, the injection reaction being conducted at a temperature ranging from about 250 to about 300° C., for a period of time sufficient to complete the reaction.
REFERENCES:
patent: 5641424 (1997-06-01), Ziolo et al.
patent: 5667716 (1997-09-01), Ziolo et al.
patent: 5667924 (1997-09-01), Ziolo et al.
patent: 5714536 (1998-02-01), Ziolo et al.
patent: 5885657 (1999-03-01), Penth
Rockenberger et al., “A new nonhydrolytic single-precursor apporach to surfactant-capped nanocrystals of transition Metal oxides” J. Am Chem Soc. 1999 vol. 121 pp. 11595-11596.*
Bentzon, M.D. Et Al, “Ordered aggregates of ultrafine iron oxide particles; ‘super crystals’,” Philosophical Magazine B, vol. 60 (No. 2), p. 169-178, (1989).
Shmakov, A.N. Et Al, “Vacancy Ordering in Gamma Fe2O3:Synchrotron X-ray Powder Diffraction and High-Resolution Electron Microscopy Studies,” J. Appl. Cryst., vol. 28, p. 141-145, (1995).
Murray, C.B. Et Al, “Synthesis and Characterization of Nearly Monodisperse CdE (E=S, Se, Te) Semiconductor Nanocrystallites,” J. Am. Chem. Soc., vol. 115, p. 8706-8715, (1993).
Fleet, M.E., “The Structure of Magnetite,” Acta Cryst., vol. B37, p. 917-920, (1981).
Van Der Helm, D. Et Al, “The Crystal Structure of Iron Cupferron Fe(O2N2C6H5)3,” Acta Cryst., vol. 18, p. 355-362, (1965).
Tamaki, K. And Okabe, N., “Manganese Cuperronate,” Acta Cryst., vol. C52, p. 1612-1614, (1996).
Elerman, Yalcin, “Bis(cupferronato)copper(II),[Cu(C6H5N2O2)2],” Acta Cryst., vol. C51, p. 1520-1522, (1995).
Chemseddine, A. and Weller, H., “Highly Monodisperse Quantum Sized CdS particles by Size Selective Precipitation,” Ber. Bunsenges Phys. Chem., vol. 97 (No. 4), p. 636-637, (1993).
Murray, C.B. Et Al, “Self-Organization of CdSe Nanocrystallites into Three-Dimensional Quantum Dot Superlattices,” Science, vol. 270, p. 1335-1338, (Nov. 24, 1995).
Ziolo, R.F. Et Al. “Matrix-Mediated Synthesis of Nanocrystalline Gamma-Fe2O3: A New Optically Transparent Magnetic Material,” Science, vol. 257, p. 219-223, (Jul. 10, 1992).
Matijevic, Egon, “Preparation and Properties of Uniform Size Colloids,” Chem. Mater., vol. 5, p. 412-426, (1993).
Kellner, R. Und Prokopowski, P., “Infrarotspektroskopische Untersuchungen an Metallcupferronaten im Bereich 4000—32 cm(-10),” Analytica Chimica Acta, vol. 86, p. 175-184, (1976).
Sun, Shouheng and Murray, C.B., “Synthesis of monodisperse cobalt nanocrystals and their assembly into magnetic superlattices (invited),” J. Appl. Phys., vol. 85 (No. 8), p. 4325-4330, (Apr. 15, 1999).
Trentler, T.J. Et Al, “Synthesis of TiO2 Nanocrystals by Nonhydrolytic Solution-Based Reactions,” J. Am. Chem. Soc., vol. 121, p. 1613-1614, (1999).
Peng, X. Et Al, “Kinetics of II-VI and III-V Colloidal Semiconductor Nanocrystal Growth: “Focusing” of Size Distributions,” J. Am. Chem. Soc., vol. 120, p. 5343-5344, (1998).
Moumen, N. and Pileni, M.P., “New Syntheses of Cobalt Ferrite Particles in the Range 2-5 nm: Comparison of the Magnetic Properties of the Nanosized Particles in Dispersed Fluid or in Powder Form,” Chem. Mater., vol. 8, p. 1128-1134, (1996).
Alivisatos A Paul
Rockenberger Joerg
Kunemund Robert
Martin Paul
Nold Charles R.
LandOfFree
Process for making surfactant capped nanocrystals does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Process for making surfactant capped nanocrystals, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for making surfactant capped nanocrystals will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2930273