Bleaching and dyeing; fluid treatment and chemical modification – Coating or sizing with dyeing process or product
Reexamination Certificate
2001-09-21
2004-03-09
Einsmann, Margaret (Department: 1751)
Bleaching and dyeing; fluid treatment and chemical modification
Coating or sizing with dyeing process or product
C008S497000, C008S922000, C008S931000
Reexamination Certificate
active
06702864
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to a process for producing high stretch and elastic knitted fabrics from polytrimethylene terephthalate fibers. More particularly, the invention relates to a combination of novel fabric constructions, and dyeing and finishing processes and conditions for producing such high stretch and elastic knitted fabrics.
BACKGROUND OF THE INVENTION
Polytrimethylene terephthalate (PTT) fibers are being developed for textile applications. It would be desirable to produce high stretch and elastic knitted fabrics from PTT. The conventional fabric construction and dyeing and finishing processes and conditions used for polyethylene terephthalate (PET) fibers and yarns do not, if used for PTT, produce a high stretch and elastic fabric. We have found that entirely different and more stringent knitted fabric constructions and dyeing and finishing conditions and processes are required in order to achieve high stretch and elastic fabrics made from PTT fibers or yarns.
SUMMARY OF THE INVENTION
This invention relates to a process of making high stretch elastic knitted fabrics from polytrimethylene terephthalate (PTT) which comprises:
(a) making a drawn textured yarn with an elongation to break of 30 to 60, preferably 35 to 55, percent by combining the steps of:
(i) spinning a polytrimethylene terephthalate polymer into a partially oriented yarn, and
(ii) draw texturing the yarn in a false-twisting texturing machine at a draw ratio of 1.05 to 2.0, preferably 1.15 to 1.5, and a yarn temperature of 50° C. to 200° C., preferably 130° C. to 180° C., using either a contact heater or a non-contact heater, and
(b) knitting the yarn into a fabric composed of intermeshing loops of the yarn wherein the stitch length is from 22 cm/100 stitches to 26 cm/100 stitches, and
(c) scouring the knitted fabric according to the following procedure:
(i) load the fabric into a dyer with water at 30 to 40° C. for 12 to 15 minutes, and
(ii) add 0.5 to 1.5% on weight of fabric of spin finish remover, and
(iii) raise the temperature to 100° C. at a rate of 1.0 to 2.5° C., and
(iv) hold for 5 to 10 minutes, and
(d) drying the fabric:
(i) on a belt at a speed 13 to 23 meter/minute through a forced air oven at a temperature of 88 to 98° C. with a residence time of 52 to 62 seconds, or
(ii) on a belt at a speed 13 to 23 meter/minute through a tenter frame forced air oven at a temperature of 135 to 145° C. with a residence time of 52 to 62 seconds, and
(e) dyeing the knitted fabric at atmospheric pressure by dispersing a dye and the fabric in water and increasing the temperature according to the following procedure:
(i) preheating the fabric to a temperature of from 25° C. to an upper limit of 44 to 54° C. by increasing the temperature at a rate of 1.0° C. to 2.5° C. per minute, and
(ii) adding the dye chemicals to the fabric in water, and
(iii) preheating the fabric to a temperature of from 44 to 54° C. to 55 to 65° C. by increasing the temperature at a rate of 1.0° C. to 2.5° C. per minute, and
(iv) preheating the fabric to a temperature of from 55 to 65° C. to 105 to 115° C. by increasing the temperature at a rate of 1 to 2° C. per minute, and
(v) maintaining the dyeing solution at this temperature for from 30 to 50 minutes, and
(f) finishing the dyed knitted fabric according to the following procedure:
(i) cooling the dyed knitted fabric to 88 to 98° C. at a cooling rate of 1° C. to 2° C. per minute, and
(ii) adding reduction agent(s) for scouring which is carried out for from 3 to 7 minutes, and
(iii) cooling the dyed knitted fabric to 55 to 65° C. at a cooling rate of 1.0° C. to 2.5° C. per minute, and
(iv) washing the dyed knitted fabric with room temperature water for from 10 to 20 minutes, and
(v) adding a solution of 0.25 to 0.75 weight percent weak organic acid, and
(vi) heating the dyed knitted fabric to 44 to 54° C. at a rate of 1.0 to 2.5° C. per minute and holding it at that temperature for from 5 to 15 minutes, and
(vii) washing the dyed knitted fabric at 34 to 44° C. for 5 to 10 minutes, and
(viii) removing the fabric, and
(g) drying the fabric:
(i) on a belt at a speed of 13 to 23 meter/minute through a forced air oven at a temperature of 88 to 98° C. with a residence time of 52 to 62 seconds, or
(ii) on a belt at a speed of 13 to 23 meter/minute through a tenter frame forced air oven at a temperature of 135 to 145° C. with a residence time of 52 to 62 seconds.
DETAILED DESCRIPTION OF THE INVENTION
It is important that the PTT yarn by draw textured in a false-twisting draw texturing machine at a draw ratio of 1.05 to 2.0, preferably 1.15 to 1.5, and a yarn temperature of 50 to 200° C., preferably 130 to 180° C. if using either a contact heater or a non-contact heater. Further, it is important that the yarn be knitted into a fabric composed of intermeshing loops of the yarn wherein the stitch length is from 22 centimeters/100 stitches to 26 centimeters/100 stitches.
PTT can be knitted and woven into many different fabric constructions. The possibilities for PTT yarns and fibers are virtually identical to other fibers such as polyester and nylon.
PTT can be used as both the fill (weft) yarn and/or the warp yarn. Fabric properties will depend on weaving tensions and finishing conditions, and are beyond the scope of this specification.
PTT can be used in knitting applications. Fabric properties will depend on knitting tension and stitch length, as well as finishing conditions. An example for an interlock fabric is described below.
While each fabric will have its own set of unique properties from the way it was made, PTT should be able to impart softness, bulk and/or good feel (soft touch). A balance will come from the particular construction, and from the way the fabric was finished. In general, some of the considerations are:
The fabric should be constructed in such a way that it accounts for shrinkage of the PTT yarn. A PTT draw textured yarn (DTY) will have 40% of more shrinkage at 100° C. (stretch yarn) and 0-40% shrinkage for a set yarn. This shrinkage will occur when the fabric is finished or dyed, and must be accounted for in the construction. Desired attributes in a fabric may not be obtained when the shrinkage is not taken into account. For example, if there is a 40% shrinkage in a knit, and the knit is finished with no decrease in width, the fabric will be stiff and lifeless.
If knitting and weaving tensions are excessively high, this will cause excessive shrinkage in the fabric. In some constructions, the yarns will lock onto themselves, making stretch impossible.
Temperatures in excess of 140° C. should be used cautiously. While the exact temperature a fabric sees is dependent on the nascent temperature and the amount of time that the fabric sees that temperature, temperatures greater than 140° C. can cause permanent loss of properties in the PTT yarn which makes up the fabric.
Dyeing temperatures should not exceed 140° C. In general, 110° C. is the most that is needed. PET blends with PTT may need somewhat higher temperatures.
Care must be taken during the dyeing procedure not to excessively stretch the fabric. Jet dyers tend to give a less destructive drying cycle.
The interlock construction is a good way to see the stretch and soft touch of PTT in a fabric. An interlock fabric was constructed using a 70/34 DTY. The DTY had about 44% boiling water shrinkage. Tenacity was 3.0 g/denier, and 35% elongation.
Several different knitting machines were used. A 32 cut, a 28 cut, and a 24 cut. The 28 cut, with normal knitting tensions gave the softest of the fabrics. Special attention was given to the length that the needle penetrated the fabric. By increasing this (but not the stitch length), a softer (to the hand) fabric was obtained.
There are very few knitting parameters (other than stitch length) which can be varied. Getting the correct DTY for the process will eventually determine the fabric properties.
PTT uses disperse dyes like PET. The carriers necessary to get good dye penetration into PET are not necessary for PTT. Neither is excessive temperature and press
Brown Houston Slade
Casey Paul Karol
Chiu-Hsiung Hwo Charles
Chuah Hoe Hin
Dangayach Kailash
Einsmann Margaret
Haas Donald F.
Shell Oil Company
LandOfFree
Process for making high stretch and elastic knitted fabrics... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Process for making high stretch and elastic knitted fabrics..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for making high stretch and elastic knitted fabrics... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3285759