Process for making betaine transition metal complexes for...

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Heavy metal containing doai

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S494000, C514S499000, C514S501000, C514S502000, C514S505000, C556S050000, C556S064000, C556S116000, C556S134000, C556S148000, C424S442000

Reexamination Certificate

active

06579904

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to a method of making a betaine transition metal complex, and the use and compositions including the betaine transition metal complex as a feed supplement for animals.
Due to efforts to supply food to a growing population of consumers, it has become common practice to supplement the feed of livestock and poultry with additives to stimulate growth, retard disease, and to achieve other such desirable results. Common agents administered to animals as feed supplements include antibiotics, vitamins, amino acids and trace minerals such as zinc, chromium, manganese, iron, cobalt and copper.
Betaine can potentially be beneficial to livestock if administered as a feed supplement. Betaine can act as a methyl donor, a metabolic role that is typically performed by two other important nutrients: methionine and choline. By relieving these two nutrients of their methyl donating duties, betaine can spare methionine and choline to perform other important physiological functions, thus increasing growth in the animal. Betaine also plays a role in osmotic regulation and stabilizes cellular metabolism. These functions help the animal adapt to environmental stress. Betaine has been explored as a feed additive for poultry and swine, but thus far has not been extensively studied for use in cattle.
One consideration in designing a betaine food supplement is bio-availability. To be effective, a food supplement must deliver the intended agent in a bio-available form. This is sometimes problematic. For example, bacteria in the rumen of cattle can degrade amino acid sources like lysine and methionine before the sources have time to pass from the rumen to the small intestine where they can be absorbed. Thus, the amino acids are not bio-available and therefore the animal does not reap the benefit of the supplement. Likewise, it is known that trace minerals in the form of inorganic salts are not readily absorbed in the gut of many animals. In natural food sources these minerals are usually present as coordination complexes. However, simply complexing the minerals with complexing agents such as ethylenediaminetetraacetate (EDTA) does not solve the problem because the complexes are so stable that they are readily excreted rather than absorbed. To be bio-available, a complex must have an intermediate stability so that it can withstand the conditions of the gastrointestinal tract and can also be absorbed by the animal.
One method of delivering bio-available trace minerals and amino acids to live stock is to form a complex of the amino acid and the trace mineral. For example, the essential amino acid methionine has been used to provide a bio-available amino acid-trace mineral complex supplement with trace minerals such as zinc, chromium, manganese, magnesium, copper, cobalt, and iron.
Another consideration in developing a betaine food supplement is its synthesis. Betaine is typically prepared by the reaction of a haloalkanoate salt with excess trimethylamine. A drawback to this process is that the product is often contaminated with unreacted starting materials, particularly trimethylamine, which is difficult to remove.
Furthermore, free betaine is not the most ideal form of betaine to use as a feed supplement, particularly if the intended recipient animal is a ruminant. As with lysine and methionine mentioned above, bacteria in the rumen can degrade betaine before it can be absorbed in the intestine. It would be highly desirable to have a synthetic method yielding betaine in a highly bio-available form and not requiring difficult purification of the product.
SUMMARY OF THE INVENTION
The present invention is generally directed to a method of making a betaine transition metal complex, and the use and compositions including the betaine transition metal complex as a feed supplement for animals. The inventive method includes the steps of: a) reacting a solution including an alkali metal salt of chloroacetic acid with a solution including the transition metal salt to give a solution including a chloroacetate transition metal complex; and b) reacting the solution including the chloroacetate transition metal complex with trimethylamine to give a solution including the betaine transition metal complex. The inventive method may be carried out such that reacting chloroacetic acid with a neutralizing amount of alkali metal hydroxide to give the alkali metal salt of chloroacetic acid generates the alkali metal salt of chloroacetic acid. In one preferred embodiment of the inventive method, the transition metal salt is selected from zinc salts, copper salts, iron salts, chromium salts, manganese salts, cobalt salts, their hydrates and mixtures of these salts, and in a more preferred method the transition metal salt is selected from zinc halide salts, zinc sulfate salts, zinc nitrate salts, copper halide, copper sulfate copper nitrate, iron halide, iron sulfate, iron nitrate, chromium halide, chromium sulfate, chromium nitrate, manganese halide, manganese sulfate, manganese nitrate, cobalt halide, cobalt sulfate, cobalt nitrate, the hydrates of these salts and the mixture of these salts. In another embodiment, the transition metal salt is a zinc salt, and preferably the zinc salt is selected from zinc chloride, zinc bromide, zinc sulfate, zinc nitrate, their hydrates and combinations of these. The reactions of the method may take place in any suitable solvent, but preferably the reactions take place in an aqueous solvent. The inventive method may further include the step of stripping any excess trimethylamine from the solution including the betaine transition metal complex. The isolation of the betaine transition metal complex may also be included as a step within the inventive method in which case the process would include the step of isolating the betaine transition metal complex by precipitation or evaporative reduction of the solution including the betaine transition metal complex.
The product of the inventive method is a betaine transition metal betaine complex salt having the formula
wherein a is a value between 1 and 6; M is a transition metal ion selected from zinc, copper, iron, chromium, manganese, cobalt and mixtures thereof; X is a counter ion and b is a whole integer selected to electrostatically balance the charge of the complex salt. Within such an illustrative embodiment, it is preferred that the counter ion X is selected from halide, sulfate, nitrate and mixtures thereof. Further the transition metal ion may be selected from zinc (II), copper (II), copper (I), iron (II), iron (III), cobalt (II), cobalt (III), chromium (II), chromium (III), manganese (II) manganese (III), and mixtures of these. Preferably the transition metal ion M is zinc and the counter ion X is a halide, sulfate or other similar suitable counter ion. As indicated the value of a may have a value from 1 upto and including 6, but preferably the value of a is 2 to 4.
Another embodiment of the present invention is a trace metal feed supplement comprising an effective amount of the transition metal betaine complex that is preferably the product of the above described process. The illustrative trace metal feed supplement may be delivered as a solution, preferably an aqueous solution, or it may be delivered in solid form. The solid form may include a carrier such as animal feed, rice hulls, or other suitable carrier for feed supplements.
One of skill in the art should also appreciate that the present invention also includes other related aspects such as a method for providing the above described trace metal-betaine feed supplement to an animal. Such a method includes the steps: a) mixing a suitable animal feed mixture with an effective amount of a trace metal betaine complex, and b) providing said supplemented feed mixture to the animal for consumption by the animal. An additional aspect of the present invention is the animal feed composition itself which includes: an effective amount of a trace metal betaine described herein and a suitable animal feed mixture for said animal. The present inv

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for making betaine transition metal complexes for... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for making betaine transition metal complexes for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for making betaine transition metal complexes for... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3131784

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.