Process for making 2-hydroxy-4-alkoxyphenyl or...

Organic compounds -- part of the class 532-570 series – Organic compounds – Four or more ring nitrogens in the bicyclo ring system

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C544S217000

Reexamination Certificate

active

06486317

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to new processes for the preparation of substituted triazines which have utility as ultraviolet radiation absorbers.
BACKGROUND OF THE INVENTION
Exposure to sunlight and other sources of ultraviolet radiation is known to cause degradation of a wide variety of materials, especially polymeric materials. For example, polymeric materials such as plastics often discolor and/or become brittle as a result of prolonged exposure to ultraviolet light. Accordingly, a large body of art has been developed directed towards materials such as ultraviolet light absorbers and stabilizers which are capable of inhibiting such degradation.
A class of materials known to be ultraviolet light absorbers are triazines. Triazine ultraviolet light absorbers are a class of compounds which have at least one 2-hydroxyphenyl substituent on the 1,3,5-triazine ring.
Trisaryltriazine ultraviolet light absorbers are compounds which have aromatic substituents at the 2-, 4- and 6positions of the 1,3,5-triazine ring, and in which at least one of the aromatic rings has a hydroxyl substituent at the ortho position. These aromatic rings may contain other substituents or may be fused polyaromatics. In general this class of compounds is well known in the art. Disclosures of a number of such trisaryl-1,3,5-triazines, as well as processes for preparing and uses thereof, can be found in the following publications, all of which are incorporated by reference as if fully set forth herein: U.S. Pat. Nos. 3,118,887, 3,242,175, 3,244,708, 3,249,608, 3,268,474, 3,423,360, 4,619,956, 4,740,542, 5,084,570, 5,288,778, 5,461,151, 5,476,937, 5,478,935, 5,543,518, 5,545,836, 5,591,850, and 5,597,854, British patent 1,033,387, Swiss patents 480,091 and 484,695, European patent applications 0,444,323 and 0,649,841, and PCT applications WO94/05645, and WO96/28431.
A commonly used class of trisaryl-1,3,5-triazine ultraviolet light absorbers is based on 2-(2,4-dihydroxyphenyl)-4,6-bisaryl-1,3,5-triazines. In these compounds two non-phenolic aromatic groups and one phenolic aromatic group are attached to the 1,3,5-triazine. The phenolic aromatic group is derived from resorcinol.
Of this class of compounds there are number of commercial products in which the para-hydroxyl group of the phenolic ring is functionalized and the non-phenolic aromatic rings are either unsubstituted phenyl (e.g., TINUVIN 1577) or m-xylyl (e.g., CYASORB UV-1164, CYASORB UV-1164L and TINUVIN 400). These 2-(2-hydroxy-4-alkoxyphenyl)-4,6-bisaryl-1,3,5-triazines UV absorbers exhibit high inherent light stability and permanence as compared to other classes of UV absorbers such as benzotriazoles and benzophenones.
CYASORB UV 1164: R=n-C
8
H
17
 TINUVIN 1577
CYASORB UV 1164 (L): R=iso-C
8
H
17
TINUVIN 400: R=CH
2
CH(OH)CH
2
OC
N
NH
2N
+1
N=12-14
These compounds are generally made by alkylating the corresponding 4-hydroxy precursor, viz., 2-(2,4-dihydroxyphenyl)-4,6-bisaryl-1,3,5-triazine with alkylating reagents.
For example, CYASORB UV-1164 is made by reacting 2-(2,4-dihydroxyphenyl)-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazine with 1-octyl halide in the presence of a base.
A second class of trisaryl-1,3,5-triazine ultraviolet light absorbers is based on 2,4-bis(2,4-dihydroxyphenyl)-6-aryl-1,3,5-triazines. In these compounds two resorcinol rings and one non-phenolic aromatic ring are attached to the 1,3,5-triazine, the 4 and 4′ hydroxyl groups of the two resorcinol rings being further alkylated. Disclosures of such triazines and applications thereof, can be found in U.S. Pat. Nos. 5,489,503, 5,668,200 and 5,686,233, each of which is incorporated by reference as if fully set forth herein.
U.S. Pat. No. 5,668,200 discloses that the combination of the above two classes of triazine ultraviolet absorbers has some advantages over their use individually.
Several approaches are reported in the literature regarding methods of production of 2-(2,4-dihydroxyphenyl)-4,6-bisaryl-1,3,5-triazines and 2,4-bis(2,4-dihydroxyphenyl)-6-aryl-1,3,5-triazines, the precursors, respectively, to 2-(2-hydroxy-4-alkoxyphenyl)-4,6-bisaryl-1,3,5-triazines and 2,4-bis(2-hydroxy-4-alkoxyphenyl)-6-aryl-1,3,5-triazine ultraviolet absorbers. For example, H. Brunetti and C. E. Luethi,
Helvetica Chimica Acta,
vol. 55, pages 1566-1595 (1972), and S. Tanimoto and M. Yamagata,
Senryo to Yakahin
, vol. 40 (12), pages 325-339 (1995).
One widely used approach, shown below, involves the reaction of 2-chloro-4,6-bisaryl-1,3,5 triazines and 2,4-dichloro-6-aryl-1,3,5-triazines, respectively, with resorcinol in the presence of aluminum chloride to form the aforementioned mono- and bis- precursors. A disadvantage of this process is that it requires an additional alkylation step to form the 2-hydroxy-4-alkoxyphenyl product. The alkylation step has associated problems such as ease of reaction and selectivity.
An alternate approach to the preparation of 2,4-bis(2,4-dihydroxyphenyl)-6-aryl-1,3,5-triazines involves the reaction of 2,4-bis(2,4-dihydroxyphenyl)-6-chloro-1,3,5-triazines with aromatic compounds in the presence of aluminum chloride.
A third class of trisaryl-1,3,5-triazine ultraviolet light absorbers is based on 2,4,6-tris(2,4-dihydroxyphenyl)-1,3,5-triazines. In these compounds, all three aryl groups on the triazine ring are derived from resorcinol. Disclosures of such trisaryltriazines, and applications thereof, can be found in U.S. Pat. Nos. 3,268,474, 5,400,414 and 5,410,048, each of which is incorporated by reference as if fully set forth herein.
These compounds are generally prepared from cyanuric chloride in a two step process, shown below, wherein cyanuric chloride is first reacted with resorcinol to form 2,4,6-tris-(2,4-dihydroxyphenyl)-1,3,5-triazine, which is subsequently reacted with an alkylating agent in a second step to form the desired 2,4,6-tris-(2-hydroxy-4-alkoxyphenyl)-1,3,5-triazines product. For example, U.S. Pat. No. 3,268,474 discloses the reaction of cyanuric chloride with resorcinol to form 2,4,6-tris(2,4-dihydroxyphenyl)-1,3,5-triazine with no formation of carbon-oxygen linked products. This approach has disadvantages in that the solubility of 2,4,6-tris-(2,4-dihydroxyphenyl)-1,3,5-triazine in common organic solvents is poor, thus making the alkylation step difficult, and that side products due to overalkylation are also formed.
Similarly, reaction of cyanuric chloride with dialkylated resorcinol is known in the art. For example, U.S. Pat. No. 3,268,474 discloses the reaction of cyanuric chloride with an excess of 1,3-dimethoxybenzene to form a mixture of 2,4,6-tris(2,4-dimethoxyphenyl)-1,3,5-triazine and 2,4-bis(2-hydroxy-4-methoxyphenyl)-6- (2,4-dimethoxyphenyl)-1,3,5-triazine.
In the reaction of cyanuric chloride with phenols, however, formation of either C-alkylation or O-alkylation has been reported depending on the substituents on the phenol. For example, Y. Horikoshi et al.,
Nippon Kagaku Kaishi,
(3), pages 530-535, (1974), CA 81:152177. Japanese patent application 09-059,263 (CA 126: 277502) discloses the use of phenols substituted with alkyl, alkoxy, alkenyl, halo or nitro substituents to form carbon-oxygen products when reacted with cyanuric chloride.
JP 09-059263
Thus, there remains a need for improved processes for the production of this class of important triazine ultraviolet light absorbing compounds, which processes avoid the need to carry out alkylation of intermediate products.
SUMMARY OF THE INVENTION
The present invention relates to new processes for the preparation of substituted triazines which have utility as ultraviolet radiation absorbers.
In particular, the present invention relates to a process for preparing a composition comprising at least one triazine compound of Formula A:
In one embodiment, the invention relates to a process for preparing a composition comprising at least one triazine compound of Formula A, which process comprises reacting in the presence of a first catalyst, sufficient amounts of a compound of Formula D:
wherein X is a halogen, and a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for making 2-hydroxy-4-alkoxyphenyl or... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for making 2-hydroxy-4-alkoxyphenyl or..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for making 2-hydroxy-4-alkoxyphenyl or... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2937869

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.