Organic compounds -- part of the class 532-570 series – Organic compounds – Four or more ring nitrogens in the bicyclo ring system
Reexamination Certificate
2001-06-06
2002-07-23
Shah, Mukund J. (Department: 1624)
Organic compounds -- part of the class 532-570 series
Organic compounds
Four or more ring nitrogens in the bicyclo ring system
Reexamination Certificate
active
06423844
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention pertains to the field of synthesis of precursor chemicals for energetic ingredients and more particularly to synthesis of a triazolotriazinetriamine precursor for ingredients in propellants, explosives, pyrotechnics, gas generators, pharmaceuticals, and azo dyes.
2. Brief Description of the Prior Art
Current methods that purport to synthesize 1,2,4-triazolo[4,3-a][1,3,5]triazine-3,5,7-triamine all involve heating dicyandiamide and hydrazine dihydrochloride at elevated temperatures (100 degrees C. or higher) for significant amounts of time in order to condense the dicyandiamide. This method was described by Kaiser et al. in a paper published in the Journal of Organic Chemistry, Vol. 18, 1953, page 1610.
Using this synthesis method theoretically provides for two possible isomeric structures of triazolotriazinetriamine (see I and II below). The first structure is the [4,3-a] triazolotriazinetriamine, pictured below as I. The second structure is the [1,5-a] triazolotriazinetriamine, pictured below as II. The product by Kaiser et al., resulting from the method above, was assigned the structure of I based upon degradation/oxidation studies of the product. However, these types of studies provide for a large degree of uncertainty as to structure.
Recently, product derived from the above process was tested using X-ray diffraction, an extremely reliable technique, and, rather than the expected product I as originally reported, it was found that the actual structure of the product was that of II. These findings were presented at the American Chemical Society annual meeting in August of 2000.
The commercial product based upon the above method, sold under the names 3,5,7-triamino-s-triazolo[4,3 -a]-s-triazine or 3,5,7-triamino-1,2,4-triazolo[4,3-a]-1,3,5-triazine, has also been tested via X-ray diffraction and found to be the structure of II. Because of the above error, prior to the present invention, there is, therefore, no known process of synthesizing product I.
The effects of the structural difference between these two products on the chemical and physical properties are of interest in any application of monotriazolotriazine ring systems. Of particular interest for energetic uses of these products would be the energy release in detonation, which correlates to the density of the materials. An analysis of densities and potential energy releases of the products reveals that the product I has a higher potential energy release value than product II that is significant in defense related energetic systems. The product II has also been investigated for use in the dye industry as a chromophore coupled to anthraquinones and indoles, and, therefore, product I should have similar potential uses.
Due to the discovery that the chemical sold as product I is actually product II, and the chemical and physical properties of the two products are significant for many uses, it would be desirable to provide a process for synthesis of product I.
SUMMARY OF THE INVENTION
Accordingly, it is an object of this invention to provide a process to synthesize a 1,2,4-triazolo[4,3-a][1,3,5]triazine-3,5,7-triamine, acid salt.
It is a further object of this invention to provide a process to synthesize 1,2,4-triazolo[4,3-a][1,3,5]triazine-3,5,7-triamine.
This invention accomplishes these objectives and other needs related to synthesis of chemical precursors for energetic ingredients by providing a process to make 1,2,4-triazolo[4,3-a][1,3,5]triazine-3,5,7-triamine comprising the steps of dissolving 2,4-diamino-6-hydrazino-s-triazine with an acid, mixing the dissolved 2,4-diamino-6-hydrazino-s-triazine with a reagent of the formula RCN, wherein R comprises a leaving group, removing acid salt crystals from the solution, and, neutralizing the acid salt crystals by mixing with a substance more basic than 1,2,4-triazolo[4,3-a][1,3,5]triazine-3,5,7-triamine.
DESCRIPTION OF THE PREFERRED EMBODIMENT
The present invention is a process for making a 1,2,4-triazolo[4,3-a][1,3,5]triazine-3,5,7-triamine, acid salt and a process for neutralizing the acid salt to make 1,2,4-triazolo[4,3-a][1,3,5]triazine-3,5,7-triamine. 1,2,4-triazolo[4,3-a][1,3,5]triazine-3,5,7-triamine can be used as a precursor for ingredients in propellants, explosives, pyrotechnics, gas generators, pharmaceuticals, and azo dyes. The general process involves ring closure of 2,4-diamino-6-hydrazino-s-triazine with an acid and a chemical of the general formula RCN where the R comprises a leaving group, and then neutralizing said acid. Because the hydrazine nitrogen atoms that form the triazole ring are already in place on the 2,4-diamino-6-hydrazino-s-triazine, the final product formed is the desired [4,3-a] isomer, rather than the [1,5-a] isomer produced by the conventional dicyandiamide/hydrazine dihydrochloride methods. The general formulas for the process are set forth below:
wherein the R comprises a leaving group.
More specifically, first, the invention comprises a process for the preparation of 1,2,4-triazolo[4,3-a][1,3,5]triazine-3,5,7-triamine, acid salt. In order to practice the present invention, one must first obtain or synthesize 2,4-diamino-6-hydrazino-s-triazine. One method for synthesizing this chemical is set forth in U.S. Pat. No. 3,061,605 by D'Alelio. The general method is to effect a reaction between 2,4-diamino-6-chloro-1,3,5-triazine and hydrazine. A specific example is set forth in column 3, lines 60-70 of the above patent and are hereby incorporated by reference. While this particular method of synthesizing 2,4-diamino-6-hydrazino-s-triazine is specifically disclosed, any prior art method of synthesis would be appropriate to practice the present invention.
The first step in the present invention comprises dissolving the 2,4-diamino-6-hydrazino-s-triazine with an acid. This step is preferably carried out at room temperature with an acid that is of sufficient strength to dissolve the 2,4-diamino-6-hydrazino-s-triazine. Many acids can be employed in the present invention, such as sulfuric acid or hydrochloric acid or mixtures of these acids with other solvents such as methanol or ethanol, and may be selected by one skilled in the art. One preferred acid is 1N hydrochloric acid.
The second step comprises mixing the dissolved 2,4-diamino-6-hydrazino-s-triazine with a reagent of the formula RCN, wherein R comprises a leaving group. This reaction will provide the amino triazole ring on the product directly. A leaving group, as used in this application, is a group that can be displaced to give ring closure; that is, produces the amino triazole ring. One preferred leaving group comprises bromine wherein the reagent comprises cyanogen bromide. Although the reaction in this step is acid catalyzed, preferred reaction times range from about twenty hours to about thirty hours in order to allow for the maximum formation of acid salt crystals. It is also preferred that the acid salt crystals be removed after the reaction is substantially complete, approximately thirty hours, to prohibit contamination of the final product with impurities. The crystals may be removed by any normal method, such as filtration, and can then be washed and dried in order to obtain the final acid salt product.
The present invention also comprises a process to take the 1,2,4-triazolo[4,3-a][1,3,5]triazine-3,5,7-triamine, acid salt synthesized above, and neutralize the acid salt crystals in order to obtain a final product of 1,2,4-triazolo[4,3-a][1,3,5]triazine-3,5,7-triamine. This process involves the steps described above as well as the following steps.
First, the acid salt crystals are removed from the solution synthesized above. Then, the acid salt crystals are neutralized by mixing them with a substance more basic than 1,2
Koppes William M.
Sitzmann Michael E.
Balasubramanian Venkataraman
Homer Mark
The United States of America as represented by the Secretary of
LandOfFree
Process for making... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Process for making..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for making... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2829608