Process for linear alpha olefins

Chemistry of hydrocarbon compounds – Unsaturated compound synthesis – By displacement of hydrocarbon radical by hydrocarbon molecule

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C585S318000

Reexamination Certificate

active

06444867

ABSTRACT:

RELATIONSHIP TO PRIOR APPLICATIONS
(Not Applicable)
STATEMENT REGARDING FEDERALLY FUNDED RESEARCH
(Not Applicable)
FIELD OF THE INVENTION
The invention generally relates to production of linear alpha olefin (LAO) products by the well-known process of carbon chain growth of the alkyl groups in aluminum alkyls and subsequent displacement of the alkyl groups as LAO's. More specifically, this application discloses novel catalysts for use in the chain growth step of the process.
BRIEF DESCRIPTION OF THE INVENTION
The production of linear alpha olefin (LAO) products by the process of carbon chain growth of low carbon count alkyl groups of aluminum trialkyls and subsequent displacement of the lengthened alkyl groups as linear alpha olefins is well known. Typically, LAO products having a carbon atom count in the range of C
4
-C
30
are produced by this process and may consist of an odd or even number of carbon atoms. In the chain growth step of the process, the attached alkyl group or groups of a trialkylaluminum compound are typically extended two carbon atoms at a time by subjecting the trialkylaluminum compound to a sufficient amount of ethylene under chain growth conditions. The chain growth step of the process is typically conducted under elevated pressure and temperature. After sufficient chain lengthening of the attached alkyl groups, the alkyl groups are thermally displaced as LAO products from the trialkyl aluminum compound, typically in the presence of excess ethylene. Typically, the displaced LAO products are separated from the reaction mixture. The remainder of the reaction mixture, predominantly comprised of triethyl aluminum and ethylene, is typically recycled to the alkyl chain growth reactor.
Production of LAO products via this method is an important industrial process and substantial resources have been and continue to be expended on improvements to the process. For example, chain growth catalysts consisting of Group 4 and Actinide metallocenes are described in U.S. Pat. Nos. 5,210,338 and 5,276,220, respectively. These metallocenes use co-catalysts consisting of methylaluminoxane (MAO) or of perfluorophenylborate salts of the activating cations N,N-dimethylanilinium and triphenylcabenium. Additionally, the use of displacement catalysts, such as nickel salts, was perfected by the addition of lead catalyst killing agents described in U.S. Pat. No. 4,918,254. Killing the catalyst immediately after the olefin displacement reaction prevents isomerization of the alpha-olefins to internal olefins. This invention represents a continuation of the improvements and discloses a new catalyst system for use in the chain growth step of the process. The new catalyst system comprises in combination a metallocene catalyst and a co-catalyst of cationic aluminum complexes having an amidinate ligand and an inert anion.
DETAILED DESCRIPTION OF THE INVENTION
For the sake of clarity, the term “comprising” as used in this application and the appended claims is defined as “specifying the presence of stated features, integers, steps, or components as recited, but not precluding the presence or addition of one or more other steps, components, or groups thereof”. Comprising is different from “consisting of” which does preclude the presence or addition of one or more other steps, components, or groups thereof.
This invention relates to the preparation of linear alpha olefins (LAO's). More particularly, this invention pertains to a novel process for the synthesis of a full range of straight chain alpha olefins by a process which involves the growth of a low molecular weight olefin onto a low molecular weight aluminum alkyl so as to produce a range of aluminum alkyls having the desired C
4
-C
30
alkyl chain lengths. Subsequently, the desired olefins are produced therefrom by displacement of thechain-lengthened alkyl groups from the aluminum alkyl.
The method of preparing a full range of C
4
-C
30
LAO's is achieved by a process comprising the steps of: (1) adding or growing ethylene onto a low molecular weight, i.e., C
2
-C
6
, aluminum trialkyl(s), (2) reacting said grown higher aluminum trialkyls with low molecular weight olefins to obtain a displacement of the higher molecular weight alkyl groups by said lower olefins thus forming higher olefins and lower molecular weight aluminum trialkyls corresponding to the displacing olefins, and (3) separating the desired displaced higher molecular weight olefins as product from the lower molecular weight aluminum alkyls and the remainder of the reaction mixture.
In Step 1 of the above process, it is typical to start with triethyl aluminum or tri(n-propyl) aluminum. The reaction for triethyl aluminum as the feed reacting with ethylene is shown by Equation 1 below.
Al(C
2
H
5
)
3
+C
2
H
4
=>Al(C
4
H
9
)(C
2
H
5
)
2
  Equation 1.
The product of Equation 1 may further react with ethylene, causing all three alkyls to become butyl groups, or it may further react with ethylene so as to change the one butyl group to a hexyl group. Regardless of the manner, the net result of the continued reaction of the feed and the intermediate products will result in an aluminum trialkyl having higher carbon count alkyl groups than the feed aluminum trialkyl. After growth, the alkyl groups in any aluminum trialkyl may be the same or different. Generally, Step 1 of the above process is conducted in the presence of a chain growth catalyst, and typically under elevated temperature and pressure.
The chain growth step may utilize a neat aluminum alkyl medium or may utilize up to about 90 weight percent of a hydrocarbon solvent diluent such as xylene, cumene, toluene, pentane, hexane, heptane, octane, decene, and the like. Reaction temperature in the chain growth step may vary from approximately room temperature (20° C.) to 150° C. Pressures of ethylene employed in the chain growth step may vary from about 1 atmosphere to about 10 atmospheres.
Step 2 of the above process is generally conducted in the presence of a displacement catalyst using an excess of ethylene as the lower displacing olefin. The higher molecular weight aluminum alkyls, which would yield the desired olefins upon displacement, may be separated from the lower molecular weight aluminum alkyls prior to displacement. The separated lower molecular weight aluminum alkyls may optionally be recycled to chain growth conditions. The recycle may be immediate or may involve storage for a period of time. Mixing of the recycled trialkyl aluminum compounds with other feed materials such as ethylene, other trialkyl aluminum compounds, and chain growth catalyst is considered to be within the scope of this process. Typically, the desired displaced LAO's are in the range of C
6
-C
30
, preferably in the range of C
6
-C
20
, and most preferably in the range of C
8
-C
16
.
After or as part of the separation (Step 3 in the above process), the lower molecular weight aluminum alkyls may be recycled to chain growth conditions. Excess ethylene present as the displacing lower olefin may also be recycled to chain growth conditions. Further processing of the desired olefins, after displacement from the trialkyl aluminum compounds, is also considered to be within the scope of this process. Such further processing of the displaced olefins includes purification, separation, conversion to an alcohol, isomerization, oligomerization, polymerization, and combinations of the preceding.
The chain growth catalyst system of this disclosure comprises, in combination, an unbridged metallocene catalyst and a co-catalyst of cationic aluminum complexes having an amidinate ligand and inert anion. Unbridged metallocene compounds are known in the art and are used as a catalyst for polymerizing ethylene. Examples of unbridged metallocenes catalysts which have been used for polymerizing ethylene are given in Formula 1 below.
(C
p
)
2
MX
2
  Formula 1.
These metallocenes consist of a metal atom (M) bound to two halogen atoms (X) and two cyclopentadienyl rings (C
p
). In the above, M is a metal selected from th

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for linear alpha olefins does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for linear alpha olefins, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for linear alpha olefins will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2826603

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.