Food or edible material: processes – compositions – and products – Inhibiting chemical or physical change of food by contact... – Biocidal or disinfecting chemical agent
Reexamination Certificate
2000-07-21
2003-02-04
Pratt, Helen (Department: 1761)
Food or edible material: processes, compositions, and products
Inhibiting chemical or physical change of food by contact...
Biocidal or disinfecting chemical agent
C426S601000, C426S656000
Reexamination Certificate
active
06514551
ABSTRACT:
The present invention relates to a process for improving the durability of, and/or stabilizing, microbially perishable products, to a process adjuvant for implementing this process, and also to the use of the process adjuvant for impacting the surfaces of microbially perishable products and or their environment.
Industrially processed foodstuffs, animal feeds, cosmetics, pharmaceuticals and other products which are susceptible to microbial spoilage must keep for a certain period of time, which is not too short, in order, following transport and marketing by the usual routes, to reach the consumer in unspoiled condition. In addition to this, the consumer does not expect the product he has bought to perish immediately after purchase but, on the contrary, that it will be possible to keep it in storage for some days or weeks, depending on the product.
Without being treated, most foodstuffs and animal feeds would perish within a few days since fingi and/or bacteria would be able to multiply in an unhindered manner, at best restricted by refrigeration, on a nutrient medium which was ideal for them. Typical examples are the spoilage of bread by moulds, e.g. Aspergillus niger, of meat products (e.g. sausage) by enterobacteria or lactobacilli and the contamination of poultry by salmonellas, among many others. Since fungi, including yeast and/or their spores, and also Gram-positive and Gram-negative bacteria, are ubiquitous wherever a sterile environment has not been created by special procedures which are expensive and not applicable industrially for economic reasons, suitable countermeasures have to be taken.
Conventionally, therefore, foodstuffs, animal feeds, cosmetics, pharmaceuticals, paints, paper and celluloses and other perishable products are preserved using preservatives which, according to the Codex Alimentarius List of the Food and Agriculture Organization (FAO/WHO Food Standard Programme) are listed, as “synthetic preservatives”, in Division 3 Food Additives Preservatives 3.73 and mainly employed in the form of single chemical substances or combinations of these substances.
The preservatives which are included in the abovementioned list possess bacteijostatic and/or fungistatic activity and substantially improve dura-bility. However, they are rejected by many consumers since their effects on the health of the consumer are not known aiid/or harmful- iifluences cannot be excluded, in particular in association with repeated intake over a long period of time.
A particular disadvantage of these preservatives is that they are added to the foodstuff regularly. As a result, relatively high concentrations of these preservatives also enter the human body during consumption. The reactions in the form of allergic diseases which are seen much more frequently nowadays are the consequence.
An alternative to preservation by adding synthetic preservatives is thermal inactivation of microorganisms, for example by pasteurization. Pasteurization means a thermal treatment at from 70 to 85° C. for an exposure time of from 30 to 120 minutes.
While pasteurization substantially improves the durability of products which have been treated in this way, it is nevertheless technically elaborate and consumes a very large amount of energy. Over and above this, the viability of spores is often either not impaired or only impaired to a very limited extent. Furthermore, pasteurization is not applicable to temperature-sensitive products or leads to a not inconsiderable loss of quality, since the “degree of freshness” of the pasteurized product declines, at the very latest, as a result of the second thermization (up to 85° C.) which is often required. In addition, it is precisely the valuable constituents of foodstuffs, cosmetics or pharmaceuticals, for example vitamins, amino acids and many pharmaceutical active compounds, which are thermolabile, so that thermal treatment under the customary conditions of pasteurization is out of the question.
Another possibility for improving durability is to pack the product which is endangered by spoilage under nitrogen or CO
2
in an airtight manner, or to supply it in vacuum packs as is the case, for example, with ground coffee. However, these processes are expensive and elaborate and therefore not applicable to many foodstuffs.
The object of the invention is, therefore, to provide a process for improving the durability of, and/or stabilizing, microbially perishable products, in which, during the process for preparing, processing or packaging the products, their surfaces and/or their environment, in particular the environmental air and/or the surfaces of the utensils or other materials which come directly or indirectly into contact with the products, are impacted with one or more process adjuvants. By these means, it is intended, in particular, to make it possible to improve the durability of, and stabilize, foodstuffs, animal feeds, cosmetics, pharmaceuticals and other products which are endangered by spoilage without having to mix synthetic preservatives into these treated substances or use pasteurization at temperatures of from 70 to 85° C. The intention is also to achieve a reduction in the quantity of the gents employed for the improvement in durability and the stabilization.
According to the invention, this object is achieved by a process adjuvant which comprises at least one microbicidally active flavouring substance, preferably at least two flavouring substances.
The invention furthermore relates to a process adjuvant which is characterized in that it comprises at least one microbicidally active flavouring substance, preferably at least two flavouring substances.
Finally the present invention also relates to the use of the process adjuvant for impacting the surfaces of microbially perishable products and/or their environment for the purpose of spreading, lubricating, emulsifying, separating, cleansing, spraying, nebulizing, gasifying and cutting.
The flavouring substances which are contained in the novel process adjuvants are exclusively natural or identical-to-nature flavouring substances which are recognized, under FEMA, as being safe (GRAS—generally recognized as safe). The aforementioned list is the FEMA GRAS Flavouring Substances List GRAS 3-16 Nos. 2001-3834 (as of 1993), which lists natural and identical-to-nature flavouring substances which are authorized by the American Public Health Authority FDA for use in foodstuffs (FDA Regulation 21 CFR 172.515 for identical-to-nature flavouring substances (Synthetic Flavouring Substances and Adjuvants) and FDA Regulation 21 CFR 182.20 for natural flavouring substances (Natural Flavouring Substances and Adjuvants). Flavouring substances which meet these FDA standards can be employed in a “quantum satis” manner, i.e. they may be present in the foodstuff up to the highest concentration at which they still do not impair the smell or taste of the foodstuff to which they have been added. The flavouring substances listed under FEMA coincide, to a large extent, with the substances contained in the corresponding European standard COE.
According to the invention, the flavouring substances classified as “NAT4” according to Article V of European Community Directive Flavourings (22.06.88) may also be used provided that they are regarded as being safe in accordance with the abovementioned FEMA GRAS list. NAT4 substances are substances which can be declared to be identical-to-nature-under certain conditions, for example when the substances are employed in combination with, and as a constituent of, a natural or identical-to-nature flavouring substance.
The particular advantage of the novel process adjuvants is that, owing to their constituents being listed in the FEMA GRAS list and being recognized by the U.S. Public Health Authority FDA, which is probably the most critical health authority of all, as being harmless, they can readily be added to foodstuffs in the “quantum satis” concentration range.
A further particular advantage is that the process adjuvants do not affect the taste and smell of the treated products.
The novel p
Child, Jr. John S.
Pratt Helen
LandOfFree
Process for improving the durability of, and/or stabilizing,... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Process for improving the durability of, and/or stabilizing,..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for improving the durability of, and/or stabilizing,... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3171816