Process for growing a magnesium oxide film on a silicon...

Single-crystal – oriented-crystal – and epitaxy growth processes; – Forming from vapor or gaseous state – With decomposition of a precursor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C117S090000, C117S094000, C117S095000, C117S106000, C117S944000, C428S688000

Reexamination Certificate

active

06800133

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a chemical vapor deposition (CVD) process for growing a single-crystalline magnesium oxide film having an improved quality on a silicon (100) substrate having a coated cubic silicon carbide buffer layer.
BACKGROUND OF THE INVENTION
Magnesium oxide is a transparent and chemically stable material having good electric properties and does not undergo a phase transition even at a high temperature up to its melting temperature of 2852° C. Magnesium oxide has been used as a substrate for preparing thereon films of a number of inorganic compounds, i.e., various oxides such as cuprate-based high-T
c
superconductors, lithium niobate and barium titanate, as well as nitrides such as gallium nitride and niobium nitride. Also, it is known that films of such oxides and nitrides having excellent properties can be grown on a magnesium oxide film coated on the surface of quartz, silicon, gallium arsenide or sapphire.
There have been reported various methods to prepare a magnesium oxide film on the surface of a single crystal substrate. For example, DeSisto et al. disclose an MgO thin film deposited on sapphire or sapphire coated with alumina by ultrasonic spray pyrolysis [W. J. DeSisto and R L. Henry, “Preparation and characterization of MgO thin films deposited by spray pyrolysis of Mg(2,4-pentanedionate)
2
”, J
Crest. Growth
109, 314-317 (1991)]. Also, Yoon et al. and Tarsa et al. describe MgO films deposited on Si and GaAs, respectively, by a sol-gel method [J. G. Yoon, Y. J. Kwag, and H. K. Kim, “Structural Characterization of Sol-Gel Derived MgO Thin Film on Si Substrate”, J
Korean Phys. Soc
. 31, 613-616 (1997); and E. J. Tarsa, X. H. Wu, J. P. Ibbetson, J. S. Speck, and J. J. Zinck, “Growth of epitaxial MgO films on Sb-passivated (001)GaAs: Properties of the MgO/GaAs interface”,
Appl. Phys. Lett
. 66, 3588-3590 (1995)]; Fork et al. and Nashimoto et al., MgO films formed on Si and GaAs, respectively, by pulsed laser deposition [D. K. Fork, F. A. Ponce, J. C. Tramontana, and T. H. Geballe, “Epitaxial MgO on Si(001) for Y—Ba—Cu—O thin film growth by pulsed laser deposition”,
Appl. Phys. Lett
. 58, 2294-2296 (1991); D. K. Fork and G. B. Anderson, “Epitaxial MgO on GaAs(111) as a buffer layer for z-cut epitaxial lithium niobate”,
Appl. Phys. Lett
. 63, 1029-1031 (1993); and K. Nashimoto, D. K. Fork, and T. H. Geballe, “Epitaxial growth of MgO on GaAs(001) for growing epitaxial BaTiO
3
thin films by pulsed laser deposition”,
Appl. Phys. Lett
. 60, 1199-1201 (1992)]; Bruley et al. and Kaneko et al., MgO films deposited on GaAs and Si, respectively, by magnetron sputtering [J. Bruley, S. Stemmer. F. Ernst, M. Ruhle, W. Y. Hsu, and R. Raj, “Nanostructure and chemistry of a (100)MgO/(100)GaAs interface”,
Appl. Phys. Lett
. 65, 564-566 (1994); and Y. Kaneko, N. Mikoshiba, and T. Yamashita, “Preparation of MgO Thin Films by RF Magnetron Sputtering”,
Jpn. J. Appl. Phys
. 30, 1091-1092 (1991)]; and Hung et al. and Masuda et al., MgO films deposited on GaAs and/or Si, by electron-beam evaporation [L. S. Hung, R. Zheng, and T. N. Blanton, “Epitaxial growth of MgO on (100)GaAs using ultrahigh vacuum electron-beam evaporation”,
Appl. Phys. Lett
. 60, 3129-3131 (1992); and A. Masuda and K. Nashinioto, “Orientation of MgO Thin Films on Si(100) and GaAs(100) Prepared by Electron-Beam Evaporation”,
Jpn. Appl. Phys
. 33, L793-L796 (1994)].
For epitaxially growing a film of good quality, one needs to consider such factors as lattice match between the substrate and the film to be deposited thereon, crystal structures and the nature of chemical bonds thereof. However, when magnesium oxide (lattice constant: 0.4213 nm) whose lattice oxygen and magnesium atoms respectively are of a face-centered cubic structure is grown on a silicon single crystal (lattice constant: 0.5431 nm) having the diamond structure, it is difficult to obtain an MgO film of good quality due to a very large lattice mismatch of −22.4%.
SUMMARY OF THE INVENTION
Accordingly, it is an object of the present invention to provide a method for growing a single-crystalline MgO film having improved quality on a Si(100) substrate.
In accordance with one aspect of the present invention, there is provided a method for growing a single-crystalline MgO film on a Si(100) substrate, which comprises depositing a cubic SiC buffer layer on the substrate and forming a MgO film on the SiC layer using a chemical vapor deposition process.


REFERENCES:
patent: 5323023 (1994-06-01), Fork
patent: 5418216 (1995-05-01), Fork
patent: 5482003 (1996-01-01), McKee et al.
patent: 5776621 (1998-07-01), Nashimoto
patent: 5830270 (1998-11-01), McKee et al.
patent: 6046464 (2000-04-01), Schetzina
patent: 6118571 (2000-09-01), Wessels et al.
patent: 6122429 (2000-09-01), Wessels et al.
patent: 6605151 (2003-08-01), Wessels et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for growing a magnesium oxide film on a silicon... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for growing a magnesium oxide film on a silicon..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for growing a magnesium oxide film on a silicon... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3285380

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.