Process for extracting oil from oil-bearing naturally...

Organic compounds -- part of the class 532-570 series – Organic compounds – Fatty compounds having an acid moiety which contains the...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C554S009000, C554S013000, C554S016000, C554S018000, C554S020000, C554S021000

Reexamination Certificate

active

06248910

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a multi-stage extraction process for extracting oil from naturally occurring oil-bearing organic materials. The oil, which is extracted, is inherent in the organic material by nature and is extracted in two or more extraction stages with an effective solvent at effective temperatures and pressures. The oil-bearing organic material is subjected to a vacuum between each extraction stage.
BACKGROUND OF THE INVENTION
In many instances the characteristics of a particular naturally occurring organic material, such as agricultural, animal and seafood based products can be altered by the removal of certain components soluble in organic solvents. Non-limiting examples of such components include: phospholipids, fish oils, plant oils, fats, fatty acids, alcohols, cholesterol, waxes, gums, stearoids, oil soluble proteins, flavonol, essential oils, natural dyes, and PCBs.
More particularly, oils derived from plant materials, such as oil-seeds, cereal brans, fruits, beans, and nuts, as well as fish oils, are the source of raw material for many important commercial products. For example, oils from plant materials are extensively used in cooking, in cosmetics, pharmaceuticals, as carriers for insecticides and fungicides, in lubricants, in drilling muds, and in myriad other useful products. Consequently, much work has been done over the years in developing improved processes for extracting oil from such materials.
One of the most widely used processes for removing oil from oil-bearing naturally occurring organic materials is solvent extraction. In solvent extraction, the oil-bearing material is treated with a suitable solvent, usually the lower carbon alkanes, at elevated temperatures and pressures, to extract the oil from the oil-bearing material. The resulting solvent/oil mixture is then fractionated to separate the valuable oil from the solvent, which is recycled. Most solvent extraction processes in commercial use today employ hexane or carbon dioxide as the solvent. While hexane extraction is the most widely used today, there are also teachings in the art in which normally gaseous solvents are used at both supercritical and subcritical conditions.
One such teaching is found in U.S. Pat. No. 1,802,533 to Reid, wherein a normally gaseous solvent, preferably butane or isobutane, is liquefied by decreasing the temperature and/or increasing the pressure, then passing the solvent through a bed of the oil-bearing material in an extraction vessel. The solvent and extracted oil are then passed to a still where the solvent is separated from the oil. The extracted material must then be placed in another still where it is heated to remove solvent, which remained entrained in the extracted material. There is no suggestion of obtaining a substantially solvent-free, dry, extracted material without an additional treatment step after extraction.
Another extraction process is taught in U.S. Pat. No. 2,548,434 to Leaders wherein an oil-bearing material is introduced into the top of an extraction tower and passed counter-current to a liquefied normally gaseous solvent, such as propane, which is introduced at the bottom of the extraction tower. The tower is operated near critical conditions so that the solvent selectively rejects undesired color bodies, phosphatides, gums, etc. The resulting solvent/oil mixture can then be flashed to separate the solvent from the oil. In another embodiment, the solvent/oil mixture is first subjected to a liquid/liquid separation resulting in one fraction containing solvent and a less saturated fatty material, and another fraction containing solvent and a more saturated fatty material. The solvent is then flashed from both fractions. The extracted material remaining in the tower is drawn off and subjected to a vacuum flashing operation to remove entrained solvent.
Also, U.S. Pat. No. 4,331,695 to Zosel teaches a process for extracting fats and oils from oil-bearing animal and vegetable materials. The material is contacted with a solvent, such as propane, in the liquid phase and at a temperature below the critical temperature of the solvent of extract fat or oil from the material. The resulting solvent/oil mixture is treated to precipitate the extracted fat or oil from the solvent by heating the solvent to above the critical temperature of the solvent without taking up heat of vaporization. The extracted residue (shreds) is then treated to remove any entrained solvent, either by blowing it directly with steam, or by indirect heating followed by direct steaming.
In U.S. Pat. No. 5,041,245 to Benado, a continuous solvent extraction method utilizing propane is disclosed to remove oils from vegetable matter, particularly rice bran. According to this method, a sufficient amount of liquid sealing medium is first injected into the vegetable matter in a feeding zone to form a dough-like plastic mass, which is compacted and transported by a conveyor assembly to an extraction zone to form a bed. Propane is then introduced into the bed of the extraction zone being operated at 102°-122° F. and 125-250 psig to react with the bed of material. The micella of extracted oil and solvent resulting from this from the reaction of propane and bed material is then separated from the remaining solid residue of the bed material. The propane is then separated from the extracted oil by evaporation or volatilization methods. The preferred separation method is to first subject the micella near its critical pressure (600 psig for propane/rice bran oil mixture) and significantly elevated temperature (190°-200° F. for propane/rice bran oil mixture) which can also be near critical. This yields a high solvent light phase (98% solvent, 2% bran oil) and an oil-enriched heavy phase (60% solvent, 40% bran oil). The enriched heavy phase under reduced pressure is then delivered to a heater-evaporator and further treated to form a more oil-enriched heavy phase (10% solvent, 90% bran oil). This phase is then de-pressurized to about one atmosphere, and further treated in a second combined heater-evaporator stage to produce an oil stream having not more than 1-2% propane. Further, similar treatment of this oil stream could be accomplished to remove additional propane if desired.
Other references, which teach solvent extraction of oil-bearing materials, with normally gaseous solvents, include U.S. Pat. No. 2,682,551 to Miller and U.S. Pat. No. 2,560,935 to Dickinson. In each of these processes, the extracted material must be further processed to remove entrained solvent.
While prior art extraction methods, particularly hexane extraction, have met with various degrees of commercial success, there still remains a need in the art for an improved solvent extraction method which is more energy and cost efficient, which can effectively remove the solvent from the extracted compounds to meet government regulations, which is especially suitable for the processing of certain troublesome oil-bearing materials, as well as which allows greater selectivity of the compounds removed from the carbonaceous material and which results in the recovery of de-oiled products having superior nutrient and health characteristics.
When the oil-bearing material contains significant amounts of oil, prior art solvent extraction methods have been inefficient for removing most or all of the oil. Examples of such material would include jojoba, cocoa, flax seed, rapeseed, and canola, which are 30%-60% by weight oil. In these instances it has been necessary to first press the material to remove a majority of the oil before using solvent extraction methods to remove the remaining amounts of oil. Alternatively, the material could be first mechanically ground or pulverized to render the oil more accessible to reaction with the solvent. This latter method is difficult if the material has a high oil content.
In many of the instances where the material must first be pressed it is necessary to subject the material to high temperatures (200°-360° F.) to effectively remove the oil. In food material such high

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for extracting oil from oil-bearing naturally... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for extracting oil from oil-bearing naturally..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for extracting oil from oil-bearing naturally... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2487533

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.