Process for etching bismuth-containing oxide films

Etching a substrate: processes – Masking of a substrate using material resistant to an etchant

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C216S109000, C216S100000

Reexamination Certificate

active

06669857

ABSTRACT:

BACKGROUND OF THE INVENTION
Field of the Invention
The present invention relates to a process for etching bismuth-containing oxide films. The present invention further relates to a process for structuring bismuth-containing oxide films.
Compared to conventional electronic memories, for example DRAMs and SRAMs, ferroelectric memories have the advantage that the stored information is not lost but remains stored even in the event of an interruption to the electric power supply. The persistence of ferroelectric memories is based on the fact that the polarization induced by an external electric field is essentially retained in ferroelectric materials even after the external electric field is switched off. Ferroelectric layers, e.g. of PZT (lead zirconate titanate), can be structured by, for example, wet chemical processes using HF, HNO
3
and H
2
O
2
. To be able to produce ferroelectric memories, in particular highly integrated ferroelectric memories, it has been proposed that bismuth-containing mixed oxides, for example strontium bismuth tantalate (SBT, SrBi
2
Ta
2
O
9
), be used as the ferroelectric layer.
Unfortunately, it has been found that bismuth-containing mixed oxides can generally be structured only unsatisfactorily by an reactive ion etching (RIE) process as described in U.S. Pat. No. 5,873,977. The amount of material removed by etching is, even when reactive gases such as oxygen, chlorine, bromine, hydrogen chloride or hydrogen bromide are used, made up predominantly, or virtually exclusively of the material removed physically. Accordingly, the method of etching displays virtually no selectivity between materials and it is generally possible to achieve only poor dimensional accuracy during the structuring.
SUMMARY OF THE INVENTION
It is accordingly an object of the invention to provide a process for etching bismuth-containing oxide films, that overcomes the above-mentioned disadvantages of the prior art methods of this general type, by which both bismuth-containing oxide films which have not been heat treated and heat-treated bismuth-containing oxide films, especially oxide films containing strontium bismuth tantalate, can be etched.
With the foregoing and other objects in view there is provided, in accordance with the invention, an etching process. The process includes providing a substrate onto which at least one oxide film containing at least one bismuth-containing oxide has been applied. An etching solution containing from 2 to 20% by weight of a fluoride ion donor, from 15 to 60% by weight of nitric acid and from 20 to 83% by weight of water, is brought into contact with the substrate so that the etching solution can react with the oxide film. The etching solution is then removed from the substrate.
For the present purposes, the term “fluoride ion donor” encompasses all fluoride-containing compounds that dissociate at least partly into fluoride anions and countercations in aqueous solution. In preferred embodiments, the fluoride ion donor is ammonium fluoride NH
4
F and/or ammonium hydrogen fluoride NH
4
HF
2
.
For the present purposes, the term “bringing into contact” encompasses all methods customary in wet chemical etching, in particular dipping the substrate into the etching solution or spraying the substrate with the etching solution.
In an advantageous embodiment of the invention, the etching solution further contains mineral acids, in particular hydrochloric acid HCl or sulfuric acid H
2
SO
4
, and/or inorganic salts of mineral acids, in particular ammonium chloride NH
4
Cl or ammonium bromide NH
4
Br, to regulate the pH. Acidification or buffering can be achieved by the additives, as a result of which the etching solution can be modified to match it to the properties of the film to be etched. Furthermore, the additives can influence the polarity of the etching solution and match it individually to the solubility of the end products of the etching process.
In addition, the etching solution may further contain organic surface-active substances, preferably alcohols, in particular ethanol or isopropanol, and/or acids, in particular acetic acid or propionic acid. The organic additives allow the surface tension of the etching solution to be modified and thus allow the wetting capability of the etching solution to be regulated.
In a further embodiment of the invention, the oxide film to be etched is a heat-treated oxide film. Without being tied to a particular explanation, it is presumed that the presence of fluoride ions in an acid medium is of great importance for the action of the etchant. It is presumed that the oxide ions in the bismuth-containing oxide layer are protonated by the acid and thus converted into hydroxide ions. These can easily be replaced by fluoride ions that have an ionic radius comparable to that of hydroxide ions. This leads to formation of acid-soluble fluoride complexes.
In an advantageous embodiment of the process of the invention, an oxide film containing a mixture of strontium oxide SrO, bismuth trioxide Bi
2
O
3
and tantalum pentoxide Ta
2
O
5
is etched. In a particularly advantageous embodiment of the process of the invention, the oxide film to be etched contains at least one oxide being strontium bismuth tantalate SrBi
2
TaO
9
, strontium bismuth tantalate derivatives in which tantalum is at least partly replaced by another transition metal or lanthanide, bismuth titanate Bi
4
Ti
3
O
12
, and/or strontium bismuth titanates SrBi
4
Ti
4
O
15
and Sr
2
Bi
4
Ti
5
O
18
. In a further advantageous embodiment, the oxide film contains at least one niobium-doped oxide having the composition SrBi
2
Ta
2−x
Nb
x
O
9
where 0≦x≦2. The bismuth-containing oxide films to be etched according to the invention can be applied to the substrate by any methods customary in semiconductor technology, in particular by chemical vapor deposition, sol-gel or sputtering processes.
In a particular advantageous embodiment of the process of the invention, the substrate is treated with an aqueous hydrochloric acid solution after removal of the etching solution. By this treatment, residues which may remain on the substrate after contact with and removal of the etching solution can be removed simply and quickly from the substrate and the surface of the substrate can thus be prepared for a further treatment.
In a further particularly preferred embodiment of the process, the action of the etching solution on the oxide film is aided by mechanical rubbing. This can further reduce the contact time that is necessary to dissolve the oxide film and can thus accelerate the process. For the purposes of the present invention, the term mechanical rubbing refers, in particular, to the mechanical polishing or chemomechanical polishing methods known to those skilled in the art.
With the foregoing and other objects in view there is provided, in accordance with the invention, a structuring process. A substrate is provided and has an oxide film containing at least one bismuth-containing oxide disposed on a surface of the substrate. A mask is applied to the oxide film. An etching solution containing from 2 to 20% by weight of a fluoride ion donor, from 15 to 60% by weight of nitric acid and from 20 to 80% by weight of water, is brought into contact with the substrate so that the etching solution can react with regions of the oxide film not covered by the mask. The etching solution is removed from the substrate, and then the mask is removed.
The above-described processes of the invention are suitable both for heat-treated bismuth-containing oxide films and for bismuth-containing oxide films which have not been heat treated. Since heat-treated oxide films frequently have a greater chemical resistance to etching solutions, etching films which have not been heat treated makes it possible to use greatly diluted etching solutions which allow etching which is gentler on the substrate.
In a variant of the process for structuring oxide films, a strontium bismuth tantalate oxide film is applied to the substrate and is heat treated, and a photoresist is then applied to the oxide la

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for etching bismuth-containing oxide films does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for etching bismuth-containing oxide films, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for etching bismuth-containing oxide films will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3173767

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.