Process for enriching a liquid with a gas and enriched product

Gas and liquid contact apparatus – Fluid distribution – Pumping

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C261S074000, C261S119100, C095S172000, C095S247000, C426S474000

Reexamination Certificate

active

06270059

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to a liquid enriched with an extraordinarily high concentration of a gas phase component, and in particular, to water enriched with a high concentration of oxygen gas. The invention further relates to a method of enriching a liquid with a gas so as to obtain a high concentration of the gas within the liquid. In particular, the invention relates to a method of enriching water with a high level of gaseous oxygen. The invention further relates to apparatuses for enriching a liquid with a high concentration of a gas, and in particular, for enriching water with an elevated concentration of gaseous oxygen.
BACKGROUND OF THE INVENTION
It is known that all of the vital functions contributing to the human metabolism require oxygen, and that it is necessary for the human organism to obtain sufficient oxygen through breathing. However, methods have been developed for purposefully supplying the human organism with an amount of oxygen in addition to that obtained through breathing. Such additional oxygen can be supplied for generally improving normal function and wellbeing, on the one hand, but can also be used particularly as a treatment, or as a supplement to treatments for sick individuals. To accomplish this, it is known to use enriched water, that is, water enriched with free, gaseous oxygen.
In one known method of enriching water with gaseous oxygen, oxygen gas is supplied to water via a perlite disposed on the bottom of an open container that is filled with water. Perlite is a porous volcanic mineral. The oxygen is forced through the perlite at low pressure and bubbles through the water in the container before subsequently escaping into the environment or the atmosphere at the liquid-air interface. Passing the oxygen through the water causes it to be enriched with oxygen. As a result of this enrichment, the concentration of “free” oxygen in the water is about 35 mg/L. The term ‘free’, as it is used here with respect to the oxygen gas, and throughout this application with respect to free gas, is meant to include gas molecules which are released within the liquid phase as their physical interactions with liquid molecules in the fluid are broken.
This known method has some drawbacks, however. For example, the concentration of free oxygen obtained in the water is only about 35 mg/L, which is a relatively low amount. Furthermore, after bubbling through the liquid, a portion of the supplied oxygen escapes into the atmosphere and cannot be reused, thereby resulting in a high gas consumption for the amount of oxygen-enriched water that is actually obtained.
While there may be beneficial effects to the human organism of using water enriched at the known, relatively low concentrations described above, better treatment results could be obtained if higher levels of oxygenation could be achieved. Further, if less oxygen were lost to the atmosphere, the costs of producing oxygen-enriched water could be reduced.
Besides use for human consumption, for general well being and in therapeutic methods as referred to above, oxygen enriched water has other known uses, such as in water purification processes, cleaning processes, and the like. Further, it may be desirable to enrich other liquids with other gases for other uses, at higher concentrations than are currently achievable, and with less wasted gas during the process of enrichment.
As discussed above, therefore, a need has existed for water more highly enriched with oxygen, a method of achieving the higher enrichment, and an apparatus for achieving the higher enrichment. A need has further existed for other liquid gas-enriched products, as well as a method and apparatus for producing them.
SUMMARY OF THE INVENTION
It is a principal object of the present invention to meet the above-described needs and overcome the above-described drawbacks of the prior products, methods, and apparatus.
In that regard, it is an object of the invention to provide an enriched fluid comprising a liquid phase having dispersed therein a high concentration of a gas phase component that is maintained within the liquid under normal storage conditions. In this enriched liquid, the concentration of free gas is over 60 mg/L. In particular, the liquid phase is water, and the gas phase component is oxygen.
It is also an object of this invention to provide a method for enriching a liquid with gas such that the liquid has a high concentration of free gas, while simultaneously reducing the amount of gas consumed in the process of enrichment.
It is a further object of the invention to provide an apparatus for enriching a liquid with a gas such that the liquid has a high concentration of free gas, and gas consumption is reduced.
It is also a particular object of the invention to provide a method and an apparatus for producing water enriched with a high concentration of oxygen gas, this concentration being higher than those previously achieved in the art, while simultaneously reducing the amount of oxygen consumed.
The objectives stated above are accomplished in accordance with the invention by first enriching a liquid with a gas in a closed overpressure system, and following the enriching of the liquid, abruptly expanding the gas-enriched liquid by subjecting it to an abrupt drop in pressure. In the invention, because the gas is supplied to the liquid in a closed overpressure system, any excess gas is prevented from escaping from the liquid into the open atmosphere, and can be recaptured for subsequent use in further enrichment of the liquid. According to a further aspect of the invention, any excess gas that does not enrich the liquid during a first enriching process, remains inside the overpressure system, and can advantageously be reused at least once in the enriching process.
Supplying the gas to the liquid under pressure effects an enrichment of gas in the liquid. This enrichment occurs under high pressure, and is primarily accomplished during the supply of gas to the liquid. The gas is maintained in the liquid by means of a close spatial connection or physical “bond” between the molecules of the gas and the liquid. However, the high concentration of free gas in the liquid is not obtained merely by introducing the gas into the liquid. Rather, the high concentration of free gas in the gas-enriched liquid is achieved by creating a rapid drop in pressure, for example, by conducting the gas-enriched liquid out of the overpressure system into a lower pressure area where abrupt expansion occurs. The gas-enriched liquid then expands because of the lowered pressure. As the gas-enriched liquid expands, the gas molecules that were physically bonded to the liquid molecules in the overpressure system are released. This release increases the concentration of free gas in the liquid, e.g., free oxygen in water.
By using the novel practice of this invention, liquids enriched with concentration of over 60 mg/L, and preferably, over 140 mg/L of free gas may be obtained. Most preferably, the amount of free gas is over about 200 mg/L. These concentrations were previously obtained using the gas-enrichment processes known in the prior art.
According to one embodiment of the invention, gas enriched liquid is conducted out of the closed overpressure system which can be selectively set to effect an accelerated, practically immediate expansion. This immediate expansion generates an especially high concentration of free gas in the liquid. It has been determined that the rapidity of expansion and the attainable concentration of free gas are directly proportional, so that the faster the expansion, the higher the concentration of free gas that is obtained in the enriched liquid. Therefore, by setting the rate of expansion of the gas-enriched liquid, the desired concentration of free gas in the liquid may advantageously be selected.
According to another embodiment of the invention, the gas-enriched liquid that is conducted away from the closed overpressure system is expanded in a lower pressure system provided with an outlet, with a pressure drop occurring along th

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for enriching a liquid with a gas and enriched product does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for enriching a liquid with a gas and enriched product, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for enriching a liquid with a gas and enriched product will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2469226

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.