Process for determining lateral overturning of vehicle and...

Data processing: vehicles – navigation – and relative location – Vehicle control – guidance – operation – or indication – Vehicle subsystem or accessory control

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C701S001000, C340S429000, C340S440000, C280S735000, C180S282000

Reexamination Certificate

active

06618655

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a process for determining the presence or absence of a possibility that a vehicle is overturned laterally or sideways, based on a rolling angle and a rolling angular speed of the vehicle. The present invention also relates to an occupant protecting system including an occupant restraint means, in which it is determined whether there is a possibility of lateral overturning of a vehicle, based on a rolling angle and a rolling angular speed of the vehicle, and when it is determined that there is a possibility of lateral overturning, the occupant restraint means is operated.
2. Description of the Related Art
A process for determining whether there is a possibility of lateral overturning of a vehicle is known from Japanese Patent Application Laid-open No.7-164985. According to such process, on a two-dimensional map made using a rolling angle and a rolling angular speed of a vehicle as parameters, a lateral overturning region is established in an area where the rolling angle and the rolling angular speed are large (i.e., an area farther from an origin of the map), and a lateral non-overturning region is established in an area where the rolling angle and the rolling angular speed are small (i.e., an area including the origin), and when a hysteresis line made by plotting actual rolling angles and actual rolling angular speeds detected by sensors on the map enters into the lateral overturning region, it is determined that there is a possibility of lateral overturning of the vehicle, whereby an active roll bar is rised.
In order to calculate an initial value for detecting a rolling angle of the vehicle, or to move a threshold value line which is a boundary between the lateral non-overturning region and the lateral overturning region on the map, a lateral acceleration of the vehicle may be detected by a lateral acceleration sensor in some cases. When the vehicle has no rolling angular speed, an output of a lateral acceleration cannot be influenced by a position in which the lateral acceleration sensor has been mounted. However, when the vehicle has a rolling angular speed about a rolling center, if the lateral acceleration sensor is mounted at a position spaced apart from the rolling center, a radial acceleration about the rolling center is generated at the position corresponding to the lateral acceleration sensor by the rolling angular speed of the vehicle, and a component of such radial acceleration in a lateral direction of a vehicle body is included as an error in an output from the lateral acceleration sensor, resulting in a problem that the lateral acceleration sensor cannot detect an accurate lateral acceleration.
An occupant protecting system is known from Japanese Patent Publication No.7-112801, which includes a seat belt device provided with a seat belt pretensioner, and an air bag device, so that the operations of the seat belt device and the air bag device are selectively controlled based on four threshold value signals output in accordance with the magnitude of a vehicle speed and the lateral overturning of the vehicle.
When the vehicle is laterally overturned slowly at a smaller rolling angular speed, the occupant is moved toward the door window by the force of gravity. On the other hand, when the vehicle is laterally overturned rapidly at a larger rolling angular speed, the occupant is left within a vehicle compartment under the action of inertia, resulting in an increased distance to the door window. When an occupant restraint means which is deployed between the occupant and the door window such as an air curtain is used, the effect of the occupant restraint means is varied depending on whether the occupant is in a position closer to the door window. For this reason, in a vehicle including a plurality of occupant restraint means, it is necessary to properly control the operations of the plurality of occupant restraint means in accordance with a rolling angular speed at the time of lateral overturning of the vehicle to exhibit an optimal occupant restraining performance. When the occupant restraint means is operated with the occupant being closer to the door window, there is a possibility that such occupant restraint means interferes with the occupant when being deployed, whereby a sufficient effect cannot be exhibited.
SUMMARY OF THE INVENTION
Accordingly, it is a first object of the present invention to ensure that when it is determined whether there is a possibility of lateral overturning of a vehicle, based on a rolling angle and a rolling angular speed of the vehicle, a reduction in accuracy of detection of a lateral acceleration due to the rolling of the vehicle is suppressed to the minimum.
It is a second object of the present invention to ensure that when a vehicle including a plurality of occupant restraint means is laterally overturned, the plurality of occupant restraint means exhibit an optimal occupant restraining performance.
It is a third object of the present invention to ensure that the operation of an occupant restraint means which is deployed between an occupant and an inner surface of a side of a vehicle body is properly controlled in accordance with the behavior of the occupant within a vehicle compartment during lateral overturning of the vehicle.
To achieve the above first object, according to a first aspect and feature of the present invention, there is provided a process for determining lateral overturning of a vehicle, comprising the step of establishing a threshold value line separating a lateral overturning region farther from an origin and a lateral non-overturning region closer to the origin on a two-dimensional map made using a rolling angle and a rolling angular speed of the vehicle, so that when a hysteresis line for actual rolling angles and actual rolling angular speeds of the vehicle traverses the threshold value line from the lateral non-overturning region to the lateral overturning region, it is determined that there is a possibility of lateral overturning of the vehicle, and wherein a lateral acceleration sensor for detecting a lateral acceleration for establishing the threshold value line is disposed on a center plane of a body of the vehicle.
With the above feature, the lateral acceleration sensor for detecting the lateral acceleration is disposed on the center plane of the vehicle body and hence, even if a radial acceleration about a rolling center on the center plane of the vehicle body is generated due to the rolling of the vehicle about the rolling center, an output from the lateral acceleration sensor cannot be influenced because such radial acceleration lies on the center plane of the vehicle body. In addition, even if an acceleration is generated on a line connecting a point of contact of one of left and right wheels on the ground and the lateral acceleration sensor to each other due to the rolling of the vehicle body about the point of contact of the wheel on the ground, an error provided to the output from the lateral acceleration sensor by the radial acceleration generated due to the rolling is equalized in a case where the point of contact of the right wheel is a rolling center and in a case where the point of contact of the left wheel is a rolling center, whereby the influence to the accuracy of detection of the lateral acceleration sensor is suppressed to the minimum.
To achieve the above second object, according to a second aspect and feature of the present invention, there is provided an occupant protecting system comprising a plurality of occupant restraint means, in which a threshold value line separating a lateral overturning region farther from an origin and a lateral non-overturning region closer to the origin is established on a two-dimensional map made using a rolling angle and a rolling angular speed of a vehicle as parameters, and when a hysteresis line for actual rolling angles and actual rolling angular speeds of the vehicle traverses the threshold line from the lateral non-overturning region to the lateral overturning r

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for determining lateral overturning of vehicle and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for determining lateral overturning of vehicle and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for determining lateral overturning of vehicle and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3050352

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.