Process for converting phytate into inorganic phosphate

Chemistry: molecular biology and microbiology – Micro-organism – tissue cell culture or enzyme using process... – Preparing element or inorganic compound except carbon dioxide

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S601000, C426S052000, C426S054000, C435S183000, C435S962000

Reexamination Certificate

active

06284502

ABSTRACT:

BACKGROUND
The present invention is concerned with a process for converting phytate into inorganic phosphate. In particular, it concerns such a process which can be adjuncted to conventional processes which are used to extract oil from oilseeds.
Phytate [myoinositol 1,2,3,4,5,6-hexakis (dihydrogen phosphate)] is found to varying degrees in all plants as the major storage form of phosphorus. Between 60-80% of the total phosphorus in plants is in the form of phytate. Phytate in plants is often found in the form of complexes with cations such as calcium, magnesium or potassium. The resulting complexes are sometimes called phytin. The term phytate as used herein specifically encompasses such phytin complexes. Phytate is poorly digested by monogastric animals. As a result of this, monogastric animals fed a phytate-rich diet may still suffer from illnesses caused by phosphorus deficiency. This is because the phytate phosphorus is not bio-available, and the majority of dietary phytate consumed by a monogastric animal passes through its gastrointestinal tract and is excreted in the faeces. This excretion is a particular concern in areas of intensive livestock production where excessive amounts of phosphorus-enriched manure can be environmentally damaging.
A further problem associated with the presence of phytate in foods is that it forms complexes with multivalent metal cations. This can interfere with the bio-availability of such cations to animals and humans. This can lead to metal deficiency disorders or inadequate bone mineralization, especially in the case of vegetarians, elderly people and infants.
Phytate also has the disadvantage of inhibiting various enzymes in the gastrointestinal tract, including pepsin and trypsin. It is also forms complexes with proteins preventing their digestion. For these reasons, the presence of phytate in a diet is actually anti-nutritional as it reduces the digestibility of co-present proteins.
One solution which has been proposed to solve the above problems is to convert phytate into inorganic phosphate. The phosphorus in inorganic phosphate is bio-available to monogastric animals. This decreases the phosphorus content of faeces, liberates cations previously complexed by the phytate, promotes protein digestion and prevents phytate inhibition of gastrointestinal enzymes. The conversion is known to be effected by treating the phytate either in vitro or in vivo with a phosphatase enzyme called phytase. The reaction products of this conversion are myoinositol and orthophosphate, the latter being termed inorganic phosphate in this specification.
The in vivo conversion is carried out by adding phytase to foods which contain phytate. As a result, both the phytate and phytase are co-present in the gastrointestinal tract where, in theory at least, the phytase can convert the phytate into inorganic phosphate. However, this has proven to be only partially effective resulting at best in the conversion of no more than 55% of the phytate-phosphorus into inorganic phosphate, and usually a significantly smaller proportion. This incomplete conversion is primarily a consequence of the conditions within the gastrointestinal tract being quite different from those which are optimal for phytase activity. The temperature, pH, moisture and mineral content of the digesta are such that phytase is only partially effective in the gastrointestinal tract during the time which it takes for the digesta to pass through it.
The second solution of subjecting phytate-containing foods to in vitro hydrolysis with phytase has been found to be more a effective than the in vivo conversion described above. This is because the conditions of the in vitro reaction can be tailored to those which result in the phytase having its optimum activity. EP-A-0 380 343 describes one example of such a process in which phytate present in soy protein isolates is converted into inorganic phosphate. The conversion is carried out in an aqueous solution using a bacterial phytase at a pH of 2-6 and at a temperature of 20-60° C.
However, it is found that even such treatments are still unsatisfactory. Firstly, the slurry resulting from these treatments has to be dried by driving away the significant amounts of water which are conventionally included. Although such drying is a relatively simple process step, it is nevertheless relatively expensive to carry out due to the bulk of water which has conventionally been used. Such a bulk is necessary firstly to provide the aqueous environment required by the phytase in order for it to be catalytically active, and secondly to facilitate mixing of the slurry which otherwise would form a relatively viscous mass. As a result of this drying problem, such in vitro processes have had limited commercial success. The second problem which has been found is that the conversion of phytate into inorganic phosphate in these in vitro processes is still far from complete unless extremely high concentrations of (relatively expensive) phytase are used. The present inventors have found that this is due to phytate existing in two forms; a phytase-susceptible form and a mineral-bound, phytase-resistant form. The phytase-resistant form has been found to be phytate in the form of a complex with alkaline earth metal cations such as Mg
2+
and Ca
2+
.
SUMMARY
Accordingly, a first object of the present invention is to provide a commercially viable process for the in vitro conversion of phytate in a food into inorganic phosphate. A second object is to provide such a commercially viable process in which about So malt or more of the phytate is converted into inorganic phosphate. A third object is to adjunct such a process to a conventional process for extracting oil from oilseeds in order to provide, as a by-product, meal enriched with inorganic phosphate suitable for inclusion in an animal feed or for food use generally.
According to a first aspect, the present invention provides a process for converting phytate in a food into inorganic phosphate comprising the steps of (i) mechanically mixing a slurry comprising (a) 100 parts by weight of the phytate-containing food, (b) 60-1000 parts by weight of a solvent mixture which comprises water and a water-immiscible organic solvent having a boiling point of 20-100° C., the water-immiscible organic solvent constituting 20-85% by wt. of the solvent mixture, and (c) a phytase; and (ii) drying the food to remove the organic solvent. Preferably in the above process, the slurry comprises 150-750 parts by weight of the solvent mixture, more preferably 250-600 parts by weight and most preferably 325-475 parts by weight.
DETAILED DESCRIPTION
The above process is capable of converting phytate present in a food into inorganic phosphate at reduced cost compared to previously available in vitro processes and with a high yield. The phytase requires the co-presence of a significant content of solvent in order to effectively catalyse the conversion of phytate into inorganic phosphate. Whilst it has always been assumed in the prior art that this solvent should be exclusively water, the present inventors have surprisingly found that a substantial proportion of this water can be replaced by an immiscible organic solvent without significantly affecting the ability of the phytase to catalyze the conversion of phytate into inorganic phosphate. The use of a solvent system which includes 20-85% by wt., more preferably 40-75% by wt., and most preferably 50-70% by wt. of the water-immiscible organic solvent is able to support phytase activity whilst having the advantage that drying of the slurry subsequently to the phytase-catalyzed conversion to an acceptable moisture content of less than 20 wt. % is substantially cheaper than drying a comparable slurry in which the solvent is formed entirely from water. This is because, the solvent mixture used in the present invention requires the input of less energy to evaporate it from the slurry.
The slurry which is mechanically mixed preferably further comprises a chelating agent for alkaline earth metal cations. Su

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for converting phytate into inorganic phosphate does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for converting phytate into inorganic phosphate, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for converting phytate into inorganic phosphate will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2472426

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.