Coating processes – Direct application of electrical – magnetic – wave – or... – Pretreatment of substrate or post-treatment of coated substrate
Reexamination Certificate
1998-10-20
2002-10-15
Padgett, Marianne (Department: 1762)
Coating processes
Direct application of electrical, magnetic, wave, or...
Pretreatment of substrate or post-treatment of coated substrate
C427S002130
Reexamination Certificate
active
06465054
ABSTRACT:
DESCRIPTION
The invention concerns a new process for coating a metallic or semimetallic surface as well as a structured coated surface.
Surfaces can be functionalized by coating in order to achieve predetermined and desirable properties. The covalent coating of silicon surfaces with organic molecules via a carbon-silicon bond is known (M. R. Linford et al.; J. Am. Chem. Soc. 115 (1993), 12631-12632;M. R. Linford et al., J. Am. Chem. Soc. 117 (1995), 3145-3155). These coatings were produced by reacting hydrogen-terminated Si (111) with 1-alkenes by means of a radical mechanism using diacyl peroxides as radical starters. However, the use of peroxides is disadvantageous since peroxides are extremely reactive, dangerous to health and furthermore their reactivity has a low specificity.
Furthermore it is known that self-assembled monolayers of functionalized organosilyl compounds can be formed on hydroxylated silicon surfaces (F. Effenberger et al., Synthesis 1995, 1126-1130; K. Bierbaum et al., Langmuir 11 (1995), 512-518; S. Heid et al., Langmuir 12 (1996), 2118-2120; P. Harder et al., Langmuir 13 (1997), 445-454). The covalent binding of silicic acid compounds to the OH groups of an oxidized silicon surface is described in EP-A-0 664 452. However, a disadvantage of this process is that the surface has to be chemically pretreated before coating and moreover undesired cross-linking reactions can occur. In addition it is advantageous for many applications when the coating is applied to a metallic and not to an oxidized surface.
The object of the present invention was therefore to provide a process for coating metallic surfaces which does not have the disadvantages that occur in the prior art.
The object is achieved according to the invention by a process for coating a metallic or semimetallic surface which is characterized in that coating molecules which contain reactive groups are bound covalently to the surface by irradiation with light.
It was surprisingly found that activation with light enabled an efficient coating of metallic or semimetallic surfaces with molecules containing reactive groups to be obtained. In connection with the present invention the term “reactive group” means that the reactive group is covalently bound to a surface under suitable conditions and when irradiated with light of a suitable wavelength.
The binding of the coating molecules to the surface can be based on a direct photoactivation of reactive groups in the coating molecules. Furthermore the binding can also be achieved by photoactivation of the surface itself if this contains reactive groups e.g. groups that can be activated by light e.g. metal or/and semimetal hydride compounds such as silicon hydride. The groups on the surface activated by light are then able to covalently bind to reactive groups of the coating molecules. A combination of both reaction mechanisms i.e. photoactivation of the coating molecules and photoactivation of the surface is also possible.
The surfaces to be coated have metallic or semimetallic properties and can comprise one or several metals, semimetals or/and metallic or semimetallic compounds. Examples of suitable elements which form a metallic or semimetallic surface are metals and semimetals of groups 3 to 16 of the periodic system. Particularly preferred examples are silicon, germanium and metallic compounds that contain these elements. Examples of surfaces which contain more than one element are alloys which comprise two or several metals or/and semimetals. An example of a compound which has metallic properties is gallium arsenide. The surface is particularly preferably a hydrogenated surface i.e. the metal or/and semimetal atoms of the surface layer are at least partially bound to hydrogen. An example of a metal or semimetal hydride is silicon hydride. The metallic surfaces used according to the invention are in particular surfaces which have non-oxidized elements or compounds.
According to the invention the molecules containing the reactive groups are bound covalently to the metallic or semimetallic surface, for example via a surface element-carbon or surface element-oxygen bond. In this connection the molecules used can basically contain any reactive group i.e. a group which can be converted directly or/and due to interactions with the surface, into a reactive species and in particular into a radical by irradiation with light. The reactive group is preferably selected from C═C or C═O double bonds. Examples of such reactive groups are alkene, aldehyde and vinyl ether groups. Aldehyde groups are particularly preferred which can be used to obtain surprisingly high degrees of coverage. In the case of aldehyde groups binding to the surface is via the oxygen. In contrast to known coating processes on hydroxylated silicon surfaces in which the thickness of the SiO
2
layer is undetermined, it is possible to obtain predetermined, defined and uniform coatings with the process according to the invention.
When using alkene groups, the coating molecules are bound to the surface via a carbon atom.
Coated metallic or semimetallic surfaces are produced by the process according to the invention which are suitable for numerous applications e.g. to manufacture microelectronic components as well as for applications in diagnostics and medicine. Applications for functionalized surfaces which have been produced by chemically coupling coating molecules to the surface are described for example in WO 92/10092, Fodor et al., (Nature 364 (1993), 555-556) and Cheng and Stevens (Adv. Mater. 9 (1997), 481-483). Surfaces coated according to the invention by photoactivation are also suitable for these applications.
For this purpose it is expedient to use molecules for the coating which contain at least one additional functional group in addition to one or several reactive groups. The additional functional group is preferably selected from haptens, biotin, chelating groups, nucleotides, nucleic acids, nucleic acid analogues, polyethylene glycol, conjugated &pgr;-systems, charged groups, non-linear optical structures, cross-linkable groups, electrically conductive groups, amino acids, peptides and polypeptides.
Molecules can be used for applications in microelectronics which contain conjugated &pgr;-systems. Especially in the case of such compounds activation with peroxides known in the prior art is disadvantageous since the occurrence of undesired radical side reactions is observed. In contrast by irradiating according to the invention with light of a defined wavelength it is possible to selectively activate those reactive groups that are intended for binding to the metallic surface and at the same time not to influence other groups e.g. &pgr;-bonds or conjugated &pgr;-bonds in the molecule. Polyenes, aromatics, e.g. polyphenylenes, heterocycles e.g. polyheteroaryls and/or polyacetylenes are preferably used as organic molecules containing conjugated &rgr;-systems.
After application to the metallic or semimetallic surface the coating can be cross-linked by means of cross-linkable groups such as double bonds e.g. acrylic esters or/and triple bonds. Cross-linking can also be achieved by oxidation e.g. of sulphur-containing groups such as thiol or thiophene groups.
By using haptens, polypeptides and/or biotin it is possible to form solid phases that are capable of specific binding which can for example be used in diagnostic methods e.g. immunoassays.
When the surface is coated with nucleotides, nucleic acids or nucleic acid analogues such as peptidic nucleic acids, surfaces are obtained that are for example suitable for nucleic acid hybridization tests.
The use of polyethylene glycol or other inert molecules enables the production of chemically inert and resistant surfaces as well as biocompatible surfaces e.g. for use as implant surfaces.
Electrically conductive groups and certain polypeptides such as bacteriorhodopsin are especially suitable for electronic applications.
The additional functional groups can be optionally blocked by protective groups during the binding of the organic molecule
Padgett Marianne
Roche Diagnostics GmbH
LandOfFree
Process for coating surfaces does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Process for coating surfaces, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for coating surfaces will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2939087