Process for co-production of dialkyl carbonate and alkanediol

Organic compounds -- part of the class 532-570 series – Organic compounds – Carbonate esters

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C558S276000, C558S275000, C568S852000, C568S902000

Reexamination Certificate

active

06342623

ABSTRACT:

BACKGROUND
This invention relates to a method of co-producing dialkyl carbonate and alkanediol and, in particular, to a method of co-producing dialkyl carbonate and alkanediol through the use of an amorphous aluminosilicate catalyst containing alkali and/or alkaline earth metal.
Various homogeneous catalysts have been proposed for carbonate transesterification. For example, U.S. Pat. Nos. 3,642,858 and 4,181,676 disclose the preparation of dialkyl carbonates by transesterifying alkylene carbonates with alcohols in the presence of alkali metals or alkali metal compounds without the use of a support material. U.S. Pat. No. 4,661,609 teaches the use of a catalyst selected from the group consisting of zirconium, titanium and tin oxides, salts or complexes thereof.
Commercial use of homogeneous catalysts is restricted because separation of the catalyst from the unconverted reactants and organic product can be difficult. Because the transesterification is an equilibrium reaction, in an attempt to isolate the intended dialkyl carbonate by distillation of the reaction liquid without advance separation of the catalyst, the equilibrium is broken during the distillation and a reverse reaction is induced. Thus, the dialkyl carbonate once formed reverts to alkylene carbonate. Furthermore, due to the presence of the homogenous catalyst, side reactions such as decomposition, polymerization, or the like concurrently take place during the distillation which decrease the efficiency.
Various heterogenous catalysts have also been proposed for carbonate transesterification. The use of alkaline earth metal halides is disclosed in U.S. Pat. No. 5,498,743. Knifton, et al., “Ethylene Glycol-Dimethyl Carbonate Cogeneration,”
J. Molec. Catal
. 67:389-399 (1991) disclose the use of free organic phosphines or organic phosphines supported on partially cross-linked polystyrene. U.S. Pat. No. 4,691,041 discloses the use of organic ion exchange resins, alkali and alkaline earth silicates impregnated into silica, and certain ammonium exchanged zeolites. U.S. Pat. No. 5,430,170 discloses the use of a catalyst containing a rare earth metal oxide as the catalytically active component. The use of MgO/Al
2
O
3
hydrotalcites is disclosed in Japanese Unexamined Patent Application 3[1991]-44,354. The use of MgO is disclosed in Japanese Unexamined Patent Application 6[1994]-107,601. The use of zeolites ion-exchanged with alkali metal and/or alkaline earth metal, thereby containing a stoichiometric amount of metal, are disclosed in U.S. Pat. No. 5,436,362.
Inorganic heterogenous catalysts generally possess thermal stability and easy regeneration. However, these catalysts, including the zeolites containing a stoichiometric amount of alkali or alkaline earth metal, generally demonstrate low activity and/or selectivity and are unsatisfactory for commercial application.
Polymer supported organic phosphines and ion exchange resins show high activity and good to excellent selectivity in transesterification reaction between alkylene carbonate and alkanol; however, these polymeric materials do not appear very stable and gradually lose catalytic activity, especially at relatively high temperatures.
Thus, there remains a need for a method of transesterifying alkylene carbonate with alkanol to co-produce dialkyl carbonate and alkanediol that will provide higher feed conversion and product selectivity over a wide temperature range.
SUMMARY OF INVENTION
A method is provided for co-producing dialkyl carbonate and alkanediol by reacting alkylene carbonate with alkanol in the presence of an amorphous aluminosilicate catalyst which includes alkali and/or alkaline earth metal. The preferred alkylene carbonate is ethylene carbonate and the preferred alkanol is methanol.
Preferred alkali metals include potassium, sodium, cesium, or a combination thereof Cesium is most preferred.
In the method of the invention, the alkali metal, alkaline earth metal, or combination thereof can be present in the catalyst either in a stoichiometric amount or in excess of a stoichiometric amount. In a preferred embodiment, the alkali metal, alkaline earth metal, or combination thereof is present in the catalyst in an amount of about 0.1 to about 50 wt %. It is also preferred that the catalyst utilized in the method of the invention have a surface area above 100 m
2
/g.
In a separate embodiment, the catalyst utilized in the method of the invention is supported on a substrate.
The process conditions of the method of the invention include a reaction temperature of about 20° C. (68° F.) to about 300° C. (572° F.), a reaction pressure of about 14 to about 4000 psig, a liquid hourly space velocity of about 0.1 to 40 hr
−1
, and a molar ratio of alkanol to alkylene carbonate of about 1-20.
Unlike polymer catalysts such as ion exchange resins, the alkali and/or alkaline earth metal exchanged amorphous aluminosilicate catalysts used in the method of the invention are thermally stable and regenerable. The combination of high catalytic activity and selectivity in a wide temperature range, and excellent thermal stability and regenerability of the catalysts, render them suitable for commercial use in co-producing organic carbonate and alkanediol through ester exchange reaction. Also, the general availability and low cost of the catalysts could significantly improve the process economics.
The organic carbonates produced by the method of the invention, dimethyl carbonate in particular, have potential application as “green” replacements for phosgene that is used mainly in manufacture of polyurethane and polycarbonate resins. Dimethyl carbonate can also be used as a fuel additive and methylating agent in fine chemical synthesis.
DETAILED DESCRIPTION OF INVENTION
In accordance with the present invention, a method is provided for the co-production of dialkyl carbonate and alkanediol through the transesterification of alkylene carbonate with alkanol using an amorphous aluminosilicate catalyst which includes alkali metal, alkaline earth metal, or a combination thereof
Generally, all alkylene carbonates can be used as a reactant in this invention. However, lower alkylene carbonate such as ethylene carbonate, propylene carbonate, butylene carbonate or the like is preferred; ethylene carbonate or propylene carbonate is most preferred.
Generally, all alkanol reactants can be used, provided the alkanol reacts with cyclocarbonate to produce the dialkyl carbonate and alkanediol product. However, an aliphatic or aromatic alkanol having 1 to 10 carbon atoms is preferably used. For example, methanol, ethanol, n-propanol, iso-propanol, n-butanol, iso-butanol, secondary butanol, tertiary butanol, allyl alcohol, pentanol, cyclo-hexanol, benzyl alcohol, 2-phenyl ethyl alcohol, 3-phenyl propyl alcohol, 2-methoxy ethanol or the like can be used as the aliphatic or aromatic alcohol. A lower aliphatic alcohol such as methanol or ethanol is most preferably used due to its reactivity and low cost.
Further, a phenolic compound can be used in place of the alcoholic compound as the compound which has a hydroxyl (OH) group and reacts with cyclocarbonate to produce the carbonate.
Amorphous aluminosilicate is a well-known material and is usually defined as material with a wide range of pore size and pore size distribution. The material has an anionic framework, like a zeolite, but its three dimensional pore structure is not well defined.
Amorphous aluminosilicate catalysts can include both synthetic and natural materials. Synthetic amorphous aluminosilicate is commercially available and is suitable for the method of the invention. Examples of natural materials include feldspars such as orthoclase K(AlO
2
)(SiO
2
)
3
, albite Na(AlO
2
)(SiO
2
)
3
, anorthite Ca(AlO
2
)
2
(SiO
2
)
2
and celsian Ba(AlO
2
)
2
(SiO
2
)
2
. Further, these naturally existing amorphous aluminosilicates already contain alkali and/or alkaline earth metal. Thus, in such materials, it is not necessary to incorporate the metal into the catalyst, unless an excess stoichiometric amount of metal is desired.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for co-production of dialkyl carbonate and alkanediol does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for co-production of dialkyl carbonate and alkanediol, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for co-production of dialkyl carbonate and alkanediol will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2846575

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.