Process for cleaning ceramic articles

Cleaning and liquid contact with solids – Processes – Using solid work treating agents

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C134S002000, C134S006000, C134S026000, C134S036000, C134S018000, C134S042000, C134S902000, C451S038000, C451S039000, C451S075000, C451S102000, C438S015000

Reexamination Certificate

active

06565667

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to methods for cleaning ceramic articles. More particularly, the present invention relates to method for removing both particle impurities and chemical impurities from ceramic articles used in the manufacture of semiconductor devices.
BACKGROUND OF THE INVENTION
The manufacture of semiconductor devices typically requires subjecting the surface of a silicon wafer to high temperature processes such as diffusion, oxidation and deposition. In deposition processes, dielectric materials such as polycrystalline silicon, silicon nitride and silicon dioxide are deposited on the surface of the wafer. In diffusion processes, materials are diffused into the body of the silicon wafer. In oxidation processes, the surface of the wafer is oxidized to form a thin silica layer. Each of these processes typically involves placing the wafers to be processed in a holder, often called a “boat”. The boat is typically formed of a ceramic material and is configured to hold the wafer in either a horizontal or a vertical orientation. Once loaded with wafers to be processed, the boat is placed in an electrically-heated furnace or process tube, and then the environment inside the tube is altered to provide various atmospheres having temperatures typically ranging from 250° C. to over 1200° C.
Another common semiconductor process is etching. After a photolithographic pattern is deposited on the surface of a silicon wafer, the wafer is loaded into an etcher. The etcher, whose components are typically made of a ceramic material, uses a plasma etching process to remove the materials deposited on the wafer surface which are not protected by a photolithographic pattern. The typical etching process removes oxides, metals and/or polymers from the wafer surface.
Although each of the processes described above successfully develops the surface of the silicon wafer into a useable product, they also eventually contaminate the surfaces of the supporting equipment as well. For example, a nitride deposition process will leave a coating of silicon nitride upon not only the wafer, but also upon the surface of the boat which supported the wafer during the deposition process. When this coating becomes too thick, it tends to flake and contaminate nearby wafers with particles.
In an etching process, the-deliberate removal of various layers of material from the wafer-in-process can cause contaminant particles such as silica, nitrides, and alumina to be deposited on the surface of etcher components. Since contaminants adversely affect the processing of future wafers to be processed by these components, contaminant particles must be carefully cleaned from the surfaces of these components. Because of the decreasing line widths of silicon wafers, it has become increasingly important to remove more sub-micron particles from the surface of these components, more particularly sub-micron particles having a width of no more than 0.7 microns.
Several methods for cleaning used ceramic boats are known in the prior art. In one method, a used component which is coated with a deposited material such as silicon nitride, polysilicon or silica undergoes a two-step cleaning process whereby the component is first exposed to a stream of hard pellets, such as silicon carbide pellets, in a process akin to sandblasting, and then to a stream of frozen carbon dioxide (CO
2
) pellets. The first step, termed preliminary cleaning, successfully strips deposited material from the component surface, leaving behind some debris particles on the order of one micron. In the second step, termed primary cleaning, the frozen CO
2
pellets are believed to cause the micro-sized debris particles to freeze, thereby becoming brittle, and then break, thereby allowing them to be easily flushed from the surface.
Preliminary cleaning is ordinarily carried out either by impinging or “blasting” glass, aluminum oxide, silicon carbide, titanium oxide, walnut shell particles, or other hard beads against the part being cleaned. The beads are typically carried in a pressurized stream of air or other gas. The beads,can be spherical, granular, or any other desired shape and dimension. One commonly used bead material is 98% black SiC grit. The pressure under which the beads are directed to the surface depends on the composition of the part being cleaned. When a ceramic part is to be cleaned, the beads typically are applied in a gas at a pressure in the range of about 20-35 psi. Once completed, the bead blasting, preliminary cleaning, step is followed by a CO
2
cleaning process. CO
2
cleaning processes have been described in the patent literature. See, for example, U.S. Pat. No. 4,707,951, entitled “Installation for the Projection of Particles of Dry Ice”.
In another method of cleaning a used boat which is coated with deposition layers, one manufacturer recommends subjecting the used boat to an acid treatment, preferably using a strong acid such as HF, followed by baking. This HF treatment removes the deposited layer of material.
The cleanliness of virgin semiconductor processing equipment has also been a concern in the art. However, for a virgin part, the concern has typically been metallic, rather than particulate, contamination. In one conventional method of manufacturing SiC diffusion components, the virgin SiC diffusion components are subjected to a weak acid and then baked. This process serves to remove some metallic contaminants and fingerprints from the part being cleaned.
In another conventional method of insuring the cleanliness of virgin components, the component is subjected to a strong acid such as BF prior to installing it in a furnace. Similarly, hot HCl cleaning has been used in connection with semiconductor diffusion components. For example, in UK Patent Application No. GB 2,130,192, the investigators disclose a manufacturing step of subjecting a virgin SiC component to hot HCl treatments prior to use in a semiconductor furnace.
In some cases, HF treatment by itself has been considered sufficient for cleaning both virgin boats (to reduce metallic contamination) and used boats (to chemically strip coatings deposited during semiconductor processing). That notwithstanding, the use of HF alone fails to remove problematic debris particles that may still be present after such treatment.
In sum, conventional methods of providing a clean virgin semiconductor component involve acid cleaning to remove metallic contamination, while conventional methods of cleaning used components involve either i) a two-step process of mechanical stripping of deposited coats via bead blasting followed by CO
2
cleaning to remove small debris particles, or ii) hot strong acid cleaning to remove a coat of deposited material.
SUMMARY OF THE INVENTION
The fabrication of semiconductor devices requires the use of process components having a high level of surface purity, whether those components are new or reconditioned. In certain workpieces, such as ceramic boats used to position and maintain semiconductor wafers during processing, the long depth and narrow spacing of the wafer-retaining slots define a boat geometry with a contoured surface having an aspect ratio that prevents bead blasting from sufficiently stripping coatings from the deeper portions of these slots. In particular, aspect ratios, (i.e., the ratio of slot depth to slot width), of greater than about 4:1 are typically beyond the ability of conventional cleaning methods. The present invention presents a method for overcoming this and other shortcomings by providing a process in which the inorganic surface of semiconductor fabrication components is cleaned by chemical stripping followed by CO
2
cleaning. In one embodiment, the chemical stripping is carried out using a solvent containing a strong acid. In a more preferred embodiment, the chemical stripping is carried out using a solvent having at least 1 v/o of an acid selected from the group consisting of HF, acids having a pKa of less than about one, and mixtures thereof. As used herein, “v/o” represents a volume percent, and “strong

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for cleaning ceramic articles does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for cleaning ceramic articles, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for cleaning ceramic articles will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3025384

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.