Process for chlorosilane intermediates manufacture

Organic compounds -- part of the class 532-570 series – Organic compounds – Silicon containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C260S66500B

Reexamination Certificate

active

06541651

ABSTRACT:

The invention disclosed herein deals with processes for the preparation of phenyl Grignard reagents in co-solvents of toluene and ether and, the preparation of phenylchlorosilane intermediates using co-solvents of toluene and ether essentially in a one step process. The phenylsilanes in the processes of this invention are important intermediates for the preparation of various silicone materials.
BACKGROUND OF THE INVENTION
The use of basic Grignard reagents is old in the art and originally consisted of the reaction of organomagnesium halides with compounds having active hydrogen. The reagents were prepared by combining the desirable halide in absolute ether with metallic magnesium and without having to remove the solvent, the reagent was then further reacted with the compounds having the active hydrogens.
Typically, all Grignard reagent preparations are carried out in ether as the solvent. The reactions require careful attention to the volatility of the ether and therefore, care must be taken in the handling of the reagents and their eventual reaction conditions.
When the Grignard reagents are used in the preparation of chlorosilanes, one byproduct of the reaction is magnesium salts, which are quite soluble in the ether solvent or they form complexes with ether, for example diethyl ether, and are therefore not easily susceptible to complete removal from the intermediate that has been formed.
For example, in current processes for the preparation of PhMeSiCl
2
, (phenylmethyldichlorosilane), a very highly desirable intermediate, the Grignard reagent PhMgCl is formed in diethylether and then is coupled with MeSiCl
3
in diethyl ether/toluene co-solvent to form the phenylchlorosilane intermediate. It should be noted that this is a two step process to obtain the phenylchlorosilane. The majority of by-product in this reaction is MgCl
2
that is a very fine, solid powder that is highly soluble in the ether.
Earlier attempts at preparing the PhMeSiCl
2
on a commercial scale were beset by problems directly associated with the ability to remove the MgCl
2
and separate it from the desired product. This necessitated the use of large volumes of solvent and created other operational problems in the separation process. Usually, upon the distillation separation of the solvents and the formed intermediates, there always resulted a small amount, on the order of about 1 to 2 weight percent, of residual MgCl
2
and this created the need to find some way to remove this material from the final product.
The inventive processes disclosed herein have as one benefit, a one step process for the production of phenylchlorosilanes which includes the preparation of the precursor Grignard reagent, along with the capability for efficient removal of the MgCl
2
formed by the reaction, and further, there is a benefit of higher selectivity for the formation of the desired phenylchlorosilane intermediates and the efficient removal of MgCl
2
therefrom.
PRIOR ART
Methods are known in the prior art to prepare Grignard reagents containing phenyl groups and methods are known in the prior art to prepare Grignard reagents containing methyl groups.
For example, U.S. Pat. No. 2,795,627 that issued in June of 1957 deals with the preparation of phenyl Grignard reagents using chlorobenzene, magnesium and a halide catalyst, while U.S. Pat. No. 2,795,628 which also issued in June of 1957 deals with the use of chlorobenzene and magnesium at reflux temperatures to provide phenyl Grignard reagents.
In addition, OLah, in U.S. Pat. No. 3,095,460, which issued June, 1963 discloses the use of magnesium and alkylchlorides in various solvents to prepare stabilized magnesium alkyl compounds that do not use highly flammable solvents.
Tuulmets, et al., in “Partially Solvated Alkylmagnesium Chlorides in Toluene”,
Journal of Organometallic Chemistry,
523 (1996) pp. 133-138, and Tuulmets, et al., “Solvation Effects in Partially Solvated Grignard Reagents,
Jounal of Organometallic Chemistry,
575 (1999) pp.182-186, deal with the preparation of alkylmagnesium chlorides and diethylether/toluene co-solvent solutions.
Finally, Bank, et al, in U.S. Pat. No. 5,596,120, that issued Jan. 21, 1997, deals with the preparation of organosilanes in which preparation, the reaction is a one step process that comprises contacting magnesium metal with a mixture comprising an organic halide and a halosilane in a co-solvent comprising about one to fifteen moles of a dialkyl ether per mole of allyl chloride and about 0.05 to less than two moles of a liquid aromatic hydrocarbon solvent per mole of the dialkyl ether at a temperature within a range of about 5° C. to about 200° C. The hydrocarbon solvents are shown as toluene, xylene, and benzene with the preferred solvent being toluene. The organosilanes are shown as methyl-containing silanes, and no mention is made of this process to prepare phenylchlorosilanes.
THE INVENTION
What is disclosed as the invention herein is a process for the preparation of phenyl containing Grignard reagents in novel solvent mixtures comprised of a combination of dialkyl ethers and toluene, which, in another embodiment of this invention, are used to prepare phenylchlorosilanes. The processes of this invention lead to beneficial process efficiencies by allowing a one step process for the preparation of the phenylchlorosilanes and thereafter, the removal of any solids formed during the reaction in the process, along with higher selectivity for the desired intermediates, and a faster reaction in the formation of the intermediates along with the reduction in the volume of waste products associated with the one step process.
Thus, one embodiment of the invention disclosed and claimed herein is a process for the preparation of phenyl-containing Grignard reagents, the process comprising contacting magnesium metal with a phenylhalide in the presence of a co-solvent comprised of toluene and a dialkyl ether to form phenylmagnesiumhalide.
In a second embodiment, there is a process for the preparation of a chlorosilane, the process comprising contacting magnesium metal with a mixture comprising a phenylhalide wherein the halide is selected from chlorine and bromine, and coupling the formed Grignard product with a chlorosilane having the general formula R
a
SiX
4−a
wherein each R is independently selected from the phenyl group, the methyl group, the vinyl group, and hydrogen, X is chlorine or bromine, and
a
has a value of 0, 1, or 2, and in the presence of a co-solvent comprising a mixture of a dialkyl ether and toluene. After the reaction is essentially complete, the formed intermediate is separated from essentially all of any solids formed during the reaction.
With regard to the first embodiment of this invention, and with more specific detail, the process deals with the preparation of a phenyl-containing Grignard reagent wherein the process is carried out in a co-solvent mixture of toluene and a dialkyl ether.
The magnesium metal useful in this invention can be any of the known forms of the metal that are currently used for Grignard-type reactions. For example, the metal can be any of those known in the art that are in the form of powder, flakes, granules, chips, lumps, and shavings, and the like.
Contact of the magnesium metal with the phenylhalide can be undertaken in standard type reactors suitable for running Grignard type reactions. The reactor can be a batch, semi-batch, or continuous type of reactor. A preferred reactor is a continuous reactor. The environment in which the present method is carried out should be inert for best results. Therefore, in a preferred method, the reactor is purged and blanketed with an inert gas such as, for example, nitrogen or argon.
Generally, the magnesium metal is fed into a reactor containing the co-solvent mixture. The phenyl halide in additional co-solvent is also fed to the reactor at a controlled rate. The mole ratio of magnesium to the phenyl halide fed to the reactor is not critical and can be varied within wide limits. In a batch process, it is preferred that the final mole ratios o

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for chlorosilane intermediates manufacture does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for chlorosilane intermediates manufacture, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for chlorosilane intermediates manufacture will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3076929

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.