Process for breaking chemical bonds

Chemistry: electrical and wave energy – Processes and products – Electrostatic field or electrical discharge

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C204S176000

Reexamination Certificate

active

06309514

ABSTRACT:

FIELD OF THE INVENTION
This invention is directed to a process and apparatus for chemical conversion and, in particular, a process and apparatus for selective molecular modification for manufacture or destruction of chemicals.
BACKGROUND OF THE INVENTION
Each chemical bond has a natural oscillating frequency at which the atoms move towards and away from each other. The natural oscillating frequency of a bond is constant at a given temperature and pressure and is dependent on the relative sizes of the bonded atoms, the geometry of the bonds, and the nature of adjacent bonds. Thus, a unique oscillating frequency is associated with each bond in a molecule, except where geometric symmetry exists. Where such symmetry exists, the symmetrical bonds have the same oscillating frequency.
SUMMARY OF THE INVENTION
A process and apparatus is provided for selectively breaking chemical bonds using an alternating current or pulsed direct current discharge having a suitable high frequency component. The continued application of a discharge at the suitable frequency will discourage the re-formation of the dissociated bond.
According to a broad aspect of the present invention there is provided a process for breaking a chemical bond in a molecule comprising: applying to the molecule a high voltage electrical discharge having a selected active high frequency component and at least sufficient amplitude to break the chemical bond.
According to a further broad aspect of the present invention there is provided an apparatus for breaking a chemical bond in a molecule, the molecule being in a gas or vapour state comprising: a reactor having a chamber for containing the molecule; and generator means for applying an electrical discharge current through the chamber, the discharge current having an active high frequency component which selectively breaks the chemical bond.
DESCRIPTION OF THE INVENTION
Chemical bond breaking is achieved by the use of a high frequency, high voltage alternating current or pulsed direct current discharge which is selected to have a waveform having a fast rise leading edge suitable for selectively breaking a selected bond in a particular type of molecule. Where there is a mixture of gasses, there will be selective breakage of the particular bond in the particular type of molecular target.
The fast rise portion of the waveform creates a range of high frequency components defined by the rate of change at each point on the slope in conjunction with the repetition rate (i.e. frequency) and the amplitude of the waveform. The time that the leading edge of a waveform is maintained at any given frequency combined with the voltage at that point give a potential energy transfer rate. To break a selected bond in a molecule, the leading edge of the waveform is selected to have a high frequency component which interferes with the bond, termed the “active frequency” or “active high frequency component”. This active frequency is applied at a suitable voltage and maintained for a sufficient time to transfer enough energy to the molecule to break the bond.
It is believed that the active high frequency component is close to a primary or harmonic of the natural oscillating frequency of the selected bond and therefore creates constructive interference with the oscillation of any of the bonds which are in phase with the high frequency component. It is believed that suitable active frequencies are at least in the megahertz range. The active frequency is applied at a suitable voltage and is maintained for a sufficient time to transfer enough energy to the molecule to break the bond. It is believed that the suitable voltage is at least three times the combined strength of the bonds to be broken. It is further believed that an avalanche effect is created wherein further selected bonds are broken by those broken through the application of the active frequency. In such an effect, the release of bond energy causes the separated atoms to be high in energy and to collide with other molecules that have bonds weakened from the application of the current. Due to the collision, the weakened bonds are broken. Since it is believed that the applied active frequency can be a harmonic of the natural oscillating frequency, it is believed that there are many frequencies that are suitable for interference with any one bond. By “harmonic” in this disclosure it is meant not only integer multiples of the oscillating frequency of the bond, but also integer divisions. Many bond frequencies are of extremely high frequencies (in the Gigahertz range), and integer divisions of the resonating frequencies are easier to achieve than integer multiples.
In a reactor it is believed that substantially only the selected bonds are broken by applying a current having an active high frequency component and suitable voltage, since generally each bond in a molecule requires a unique frequency and minimum voltage for breakage. Selective breakage occurs even where other molecular species are present. However, due to ionization in the reactor and the impact of high energy atoms, some other bonds may be broken as well.
In an embodiment, a periodic wave form is generated having a leading edge selected to represent an active frequency for breaking a selected bond and sufficient voltage to break the bond once it is applied. In a continuous system, wherein molecules are being reacted and passed on, the flow rate of the molecules through the reactor must be considered and the voltage should be increased accordingly, to expose each portion of the gas or vapour containing the molecules to sufficient voltage to initiate bond breakage before the gas passes out of the reactor.
To carry out the process of the present invention, a current having a fast rise and sufficient voltage is applied to the gas or vapour form of a selected reactant. An active high frequency component for the bond which it is desired to break is determined and the waveform optimized by applying the discharge current to the reactant and adjusting the repetition rate or amplitude of the waveform or the inductance or capacitance of the circuit, transformer or reaction cell while monitoring the reaction by use of a means for chemical analysis, such as a mass spectrometer. In a preferred embodiment, the capacitance and inductance of the cell, circuit and transformer are maintained constant while the amplitude and repetition rate are adjusted to obtain the desired active frequency. Once determined, these parameters can be used for future chemical conversion involving that selected bond at substantially similar conditions of temperature and pressure in the reactor. Any changes in the voltage or the repetition rate of the applied discharge or changes in the inductance or capacitance of the circuit, transformer or reactor cell including any changes in reactor load, such as gas pressure, temperature, flow rate or composition, require reoptimizeation of the waveform to re-establish the active high frequency component. Such readjustment can be made manually or, in some cases, by use of a circuit feedback arrangement. In addition, in reactors produced for the same reaction and with similar geometry, the circuit can be optimized once and incorporated into each further reactor without resetting.
The present process is also useful for selective breaking of geometrically symmetrical atomic bonds in a molecule by first selecting an active high frequency component for the first bond. Once that bond has been broken, the removal of a further bond requires that a different active frequency be selected. Since, the natural oscillating frequency of a bond is dependent upon bond geometry and the nature of adjacent atoms, it is believed that the breakage of the first of the symmetrical bonds is accomplished by applying current at the primary or harmonic of the bond so that constructive interference of the bond oscillation occurs. Once this bond is broken, the oscillating frequency of the remaining symmetrical bonds changes and requires a different harmonic or primary frequency for constructive interference. The

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for breaking chemical bonds does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for breaking chemical bonds, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for breaking chemical bonds will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2555072

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.