Data processing: artificial intelligence – Knowledge processing system – Creation or modification
Reexamination Certificate
1999-08-16
2002-08-20
Black, Thomas (Department: 2121)
Data processing: artificial intelligence
Knowledge processing system
Creation or modification
C706S045000, C700S048000
Reexamination Certificate
active
06438534
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a method and system for commissioning industrial plants, in particular in the basic materials industry, having a plant control system which carries out both non-control functions and control functions and whose control system operates with process models, in particular control engineering models, for example in the form of mathematical models, neural network models, expert systems etc., in a control system computing unit
2. Description of the Prior Art
In the control of industrial plants, in particular plants which proceed with very rapid processes, very slow processes, processes which run in leaps and bounds, or processes do for which there is no suitable state sensors, operations are mostly carried out using control engineering models. As a rule, such plants have a basic automation system and a process management system (non-control and control). Experience shows that the commissioning of relatively large plants is very time-consuming and costly and requires specialists who are experienced in plant engineering. This also applies to the control engineering plant design and to the control project engineering of the individual components.
It is an object of the present invention, for plants of the type outlined above, in particular for plants in the basic materials industry, but also for plants in the chemical industry and for producing electrical power, to specify a commissioning method and a system suitable for this with which, given an optimum commissioning result, a reduction in time and costs can be achieved. In this case, the continuous operation of the plant which has been commissioned is intended to be able to be subsequently continually improved, and easily evaluable knowledge for the control project engineering and the design of corresponding plants are to be obtained. In summary, the aim can be described as reducing the engineering costs with a simultaneous improvement in the plant function.
SUMMARY OF THE INVENTION
The objects achieved in that the commissioning is carried out subdivided fashion into commissioning the non-control functions, with extensive initialization of the control functions, by means of personnel located on site, and extensive commissioning of the control functions by means of remotely-transmitted data via data lines from at least one site remote from the plant, preferably from an engineering center. As a result of this subdivision of the commissioning into a so-called basic commissioning is and an engineering commissioning, it is advantageously possible to dispense with having to use control engineering specialists, in particular specialists for the setting of parameters and improvement of control engineering models, on site. The commissioning costs thus can be reduced considerably. Furthermore, the commissioning can be carried out more rapidly and more reliably since, for the engineering commissioning, a specialist team can be made available to whom all the aids of an engineering center and external consultants are available.
It is already known to equip PCs by means of programs which are input into the PC via data transmission. Furthermore, the diagnosis of PCs as well as of individual automation devices, such as machine-tool controllers or programmed logic controllers, for example, is known. The known procedure for the equipment, diagnosis and functional improvement of individual devices cannot, however, be transferred to the commissioning of entire plants, in particular entire plants which are as complex as those in the basic materials industry. For this purpose, learning routines are just as necessary as the use of the computing intelligence of the plant, long access times and a dialog in the sense of “trial and error”. This was previously held to be impossible to implement to the extent necessary.
In a refinement of the present invention, it is contemplated that engineering optimization is carried out while commissioning the control functions. The optimization is preferably carried out “step by step” under remote influence in at least one control system computing unit of the plant. That is, the individual optimization steps run on a computing unit of the process control system so as to avoid those problems which can result in the case of taking over an optimization step carried out on an external computing unit into the computing unit of the control system. From the point of view of the complexity of the programs in the plant control systems, software errors would otherwise always be expected in taking over optimized program parts. The avoidance of implementation problems is a considerable advantage of the system according to the present invention.
In addition to remote commissioning, remote functional improvement and remote optimization of the control part, provision is also made a remotely-influenced improvement of the non-control part. Even the basic automation of an industrial plant is so complex nowadays that the remote optimization according to the present invention is worthwhile. In this case, the appropriate level of the plant control system is advantageously used.
Following the commissioning of the control functions with the initial optimization, a further improvement of plant operation is carried out continuously by means of engineering optimization with the aid of the engineering center. It is thus ensured that the plant is further operated in an optimum manner in control engineering terms. This is important, in particular, in the case of changes in the product program; for example, as the result of accepting further material grades into the product program.
The optimization relates, in particular, to setting parameters for models, such as those in the form of algorithms or artificial neural networks (ANN), and to further development of the algorithms of the models or of the design of the ANN, and of expert knowledge evaluated by computer; for example, in the form of limiting curves, etc. Thus, the most important modules of a model-based controller can be continuously improved in order to achieve optimum plant behavior.
Provision is advantageously made that, in the case of using neural networks as process models, the adaptation takes place in parallel with network training. Thus, account is taken particularly well according to the present invention of the properties of artificial neural networks (ANN). They are always in the state which is most advantageous for the optimization. It is furthermore of particular advantage if the artificial neural networks (ANN) are used for the improvement of algorithms and/or models, and if in so doing a closed loop is formed which is designed as a directly closed loop in a control system computing unit or as a loop which is closed indirectly via the engineering center. In particular, the loop which is closed via the engineering center in this case ensures that the newest control knowledge and computing knowledge can always be included in the optimization and improvement of parameters and/or models. In this case, it is advantageously also provided that the further development of models is carried out with the aid of an evolution strategy, for example via genetic algorithms. It is thus also possible for any necessary further devel the models to optimize the plant behavior and, if appropriate, also to optimize the plant itself.
In order to carry out the method in an advantageous manner, a commissioning or plant operational improvement system is provided which has at least one engineering center installed remote from the plant—in particular a commissioning and/or operational improvement center—which is connected via remote data transmission means to at least one control system computing unit of a plant which is to be commissioned in engineering terms or to be improved further in engineering terms. By this means, the advantages of the method of the present invention may be achieved.
In an embodiment of the present invention, it is provided that THE system has, in an engineering center, an internal network which is
Bell Boyd & Lloyd LLC
Black Thomas
Booker Kelvin
Siemens Aktiengesellscaft
LandOfFree
Process and system for commissioning industrial plants, in... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Process and system for commissioning industrial plants, in..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process and system for commissioning industrial plants, in... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2876829