Chemistry: fischer-tropsch processes; or purification or recover – Treatment of feed or recycle stream
Reexamination Certificate
1998-08-07
2001-02-20
Killos, Paul J. (Department: 1621)
Chemistry: fischer-tropsch processes; or purification or recover
Treatment of feed or recycle stream
C518S700000, C518S702000, C518S704000, C422S186220, C422S186220, C422S236000, C422S239000
Reexamination Certificate
active
06191174
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to a process and plant for the production of methanol.
BACKGROUND OF THE INVENTION
Methanol is synthesised in large volumes annually by conversion of a carbonaceous feedstock, usually a hydrocarbonaceous feedstock such as natural gas, into a mixture of carbon oxides and hydrogen. Such a mixture of gases is often referred to as synthesis gas.
The conversion of a hydrocarbon-containing feedstock, such as natural gas, into synthesis gas can be effected by steam reforming.
In steam reforming a mixture of desulphurised hydrocarbon feedstock, such as natural gas, and steam is passed at high temperature, typically at a temperature of from about 600° C. to about 1000° C., and elevated pressure, typically from about 10 bar up to about 50 bar, over a suitable reforming catalyst, such as a supported nickel catalyst. One commercially recommended catalyst which can be used for this purpose uses a mixture of calcium and aluminium oxides as support for the nickel. When natural gas is the feedstock, the principal reaction is:
CH
4
+H
2
O&rlarr2;CO+3H
2
The reaction products themselves are further subject to the reversible “water gas shift” reaction in which carbon dioxide and hydrogen are produced from carbon monoxide and steam:
CO+H
2
O&rlarr2;CO
2
H
2
Conversion of the carbon oxides and hydrogen to methanol occurs according to the following reactions:
CO+2H
2
&rlarr2;CH
3
OH
CO
2
+3H
2
&rlarr2;CH
3
OH+H
2
O
These reactions are conventionally carried out by contacting the synthesis gas with a suitable methanol synthesis catalyst under an elevated synthesis gas pressure, typically in the range of from about 50 bar up to about 100 bar, usually about 80 bar, and at an elevated methanol synthesis temperature, typically from about 210° C. to about 270° C. or higher, e.g. up to about 300° C.
A conventional methanol synthesis plant can be considered to comprise four distinct parts, namely:
1. a reforming plant, which produces a mixture of carbon oxides and hydrogen from a hydrocarbon feedstock;
2. a compression stage lifting the carbon oxides and hydrogen mixture to a higher pressure suitable for downstream methanol synthesis;
3. a methanol synthesis section, in which crude methanol is produced from the carbon oxides and hydrogen; and
4. a distillation section, in which the final refined methanol product is produced from the crude methanol.
Such a plant is described, for example, in WO-A-96/21634.
In order to achieve high yields of methanol, prior art processes have commonly included a recycle loop around the methanol synthesis zone so that unreacted materials leaving the methanol synthesis zone are recycled to the methanol synthesis zone. Thus, U.S. Pat. No. 4,968,722 relates to a process for the production of methanol by reacting carbon monoxide and hydrogen in which the reactants are introduced into a methanol synthesis zone comprising one or more fixed catalyst beds. The effluent from the methanol synthesis zone is fed to an absorption zone where methanol is absorbed. Unreacted reactants are fed to a further methanol synthesis and recovery zone.
U.S. Pat. No. 5,472,986 discloses a methanol production process in which hydrogen is recovered by use of a membrane from a purge gas taken from the methanol synthesis zone. The purged and separated hydrogen is recycled to the methanol synthesis zone as a reactant for methanol synthesis.
U.S. Pat. No. 4,181,675 relates to a methanol synthesis process in which synthesis gas is passed over a methanol synthesis catalyst in a methanol synthesis zone and is then cooled to condense methanol. The remaining gas is recycled to the methanol synthesis zone. A purge stream from this recycle stream may be passed through a membrane to control any build up of inert gases in the recycle stream. Inert materials are separated from carbon oxide and hydrogen, the latter being supplied to the methanol synthesis zone as reactants for methanol synthesis.
DE-A-3244302 discloses a process for the production of methanol in which unreacted methanol synthesis gas is supplied to a three-way separation stage. In the separation stage, CO is separated and recycled to the methanol synthesis zone; CO
2
is separated and supplied to the reforming zone in order to replace part of the water vapour required for reforming; and a residual gas comprising hydrogen, nitogen and methane is supplied to the reforming zone as fuel to heat the reformer tubes.
Various other methanol Production processes are known in the art, and reference may be made, for example, to U.S. Pat. No. 5,063,250, U.S. Pat. No. 4,529,738, U.S. Pat. No. 4,595,701, U.S. Pat. No. 5,063,250, U.S. Pat. No. 5,523,326, U.S. Pat. No. 3,186,145, U.S. Pat. No. 344,002, U.S. Pat. No. 3,598,527, U.S. Pat. No. 3,940,428, U.S. Pat. No. 3,950,369 and U.S. Pat. No. 4,051,300.
A number of different types of reformer are known in the art. One such type is known as a “compact reformer” and is described in WO-A-94/29013, which discloses a compact endothermic reaction apparatus in which a plurality of metallic reaction tubes are close-packed inside a reformer vessel. Fuel is burned inside the vessel, which comprises air and fuel distribution means to avoid excessive localised heating of the reaction tubes. In a compact reformer of this type heat is transferred from the flue gas vent and from the reformed gas vent of the reformer to incoming feedstock, fuel and combustion air. Other types of reformer are not as efficient as the compact reformer in transferring heat internally in this way. However, many other reformer designs are known and some are described in EP-A-0033128, U.S. Pat. No. 3,531,263, U.S. Pat. No. 3,215,502, U.S. Pat. No. 3,909,299, U.S. Pat. No. 4,098,588, U.S. Pat. No. 4,692,306, U.S. Pat. No. 4,861,348, U.S. Pat. No. 4,849,187, U.S. Pat. No. 4,909,808, U.S. Pat. No. 4,423,022, U.S. Pat. No. 5,106,590 and U.S. Pat. No. 5,264,008.
In a conventional plant, synthesis gas is compressed in passage from the reforming plant to the methanol synthesis zone. The synthesis gas compression stage is essentially present in order to provide the required pressure of from 50 bar to 100 bar in the methanol synthesis zone. The synthesis gas compressor is an expensive item which has a significant impact on the overall cost of the plant. Furthermore, the presence in the plant of synthesis gas at such high pressures necessitates the use in the plant of thick walled stainless steel or alloyed steel high pressure pipework. This pipework is expensive to buy, to weld and to use as a construction material. It therefore represents a substantial financial cost in the building of the plant.
BRIEF SUMMARY OF THE INVENTION
It is an object of the invention to provide a plant for methanol production which is cost-efficient to build and which avoids the use of at least some of the expensive components hitherto favoured in conventional methanol plants. A further object of the invention is to provide a process for the production of methanol which is carbon-efficient, providing good yields of methanol and which does not rely essentially on the use of very high pressure in the methanol synthesis zone. It is yet another object of the invention to provide a methanol production plant which is suitable for construction and operation in remote or offshore locations.
According to the present invention, there is provided a plant for the production of methanol from a hydrocarbon feedstock material comprising:
a) a steam reforming zone, adapted to be maintained under steam reforming conditions and charged with a catalyst effective for catalysis of at least one steam reforming reaction, for steam reforming of a vaporous mixture of the hydrocarbon feedstock and steam to form a synthesis gas mixture comprising carbon oxides, hydrogen and methane;
b) a methanol synthesis zone, adapted to be maintained under methanol synthesis conditions and charged with a methanol synthesis catalyst, for conversion of material of the synthesis gas mixture to a product gas mixture comprising product methanol and unreacted
Early Simon Robert
Gamlin Timothy Douglas
Linthwaite Mark Andrew
Killos Paul J.
Kvaerner Process Technology Limited
Parsa J.
Senniger Powers Leavitt & Roedel
LandOfFree
Process and plant for the production of methanol does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Process and plant for the production of methanol, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process and plant for the production of methanol will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2568679