Liquid purification or separation – Serially connected distinct treating with or without storage... – Diverse
Reexamination Certificate
2001-01-09
2002-12-03
Drodge, Joseph W. (Department: 1723)
Liquid purification or separation
Serially connected distinct treating with or without storage...
Diverse
C210S096100, C210S143000, C210S259000, C210S263000, C210S685000, C210S167050, C210S195100, C430S398000, C430S399000
Reexamination Certificate
active
06488847
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to process and equipment for covering a developer from a photoresist development waste and reusing it, and particularly to process and equipment for recovering a developer from a photoresist development waste, discharged from a process of producing electronic parts such as semiconductor devices (LSI, VLSI, etc.), liquid crystal displays (LCD) or printed boards, or the like, and reusing it.
2. Related Art
In the field of manufacturing electronic parts such as semiconductor devices and liquid crystal displays, and the like, integration scale-up and miniaturization of products have been in rapid progress. For example, the procedure of manufacturing such electronic parts includes a photolithographic process, wherein a photoresist film is formed on a substrate such as a wafer or a glass substrate, predetermined parts of the film are then irradiated with a light or the like, and subsequently the photoresist film is developed with a developer to form a fine pattern. Herein, photoresists include positive photoresists that turn soluble in a developer where exposed to a light or the like, and negative photoresists that turn insoluble in a developer where exposed to a light or the like. In the field of manufacturing electronic parts such as semiconductor devices and liquid crystal displays, positive photoresists are predominantly used. An aqueous solution of a tetraalkylammonium hydroxide (hereinafter often referred to in brief as “TAAH”) such as tetramethylammonium hydroxide (hereinafter often referred to in brief as “TMAH”) or trimethyl(2-hydroxyethyl)ammonium hydroxide (i.e., choline) as an organic alkali is usually used as a developer for such positive photoresists. Incidentally, although the mainstream developers for the negative photoresists are organic solvent developers, alkali developers may also be used for some negative photoresists.
A photoresist as material to be developed is a hydrophobic substance, and an aqueous solution of TAAH such as TMAH is hydrophilic, whereby the interfacial affinity therebetween is poor. Because of the poor interfacial affinity of the aqueous TAAH solution for the photoresist, effective development of fine patterns is difficult with the aqueous TAAH solution as an ordinary alkali developer. In order to solve this problem, alkali developers containing a surfactant have already been marketed and put into practical use (e.g., developer commercially available under the trade name of “NMD-W” and manufactured by Tokyo Ohka Kogyo Co., Ltd.).
Meanwhile, waste discharged from the development step of using an aqueous TAAH solution as the alkali developer in the photolithographic process (called “photoresist development waste” and hereinafter often referred to in brief as “development waste”) usually contains the dissolved photoresist and TAAH, and is hard to render harmless through any treatments. Thus, it is desired to recover and reuse TAAH because of its adverse effects on environment, and various attempts have been made to develop a method of recovering and rejuvenating an alkali developer (hereinafter often referred to as “developer”). Examples of such a method include methods comprising electrodialysis or electrolysis (Japanese Patent Laid-Open No. 7-328642 published on Dec. 19, 1995, and Japanese Patent Laid-Open No. 5-17889 published on Jan. 26, 1993), a method using an anion exchange resin (Japanese Patent Laid-Open No. 10-85741 published on Apr. 7, 1998), a method comprising electrodialysis or electrolysis and using an ion exchange resin(s) (U.S. Pat. No. 5,874,204 patented on Feb. 23, 1999), a method comprising neutralization and electrolysis (Japanese Patent Laid-Open No. 7-41979 published on Feb. 10, 1995), a method using activated carbon (Japanese Patent Laid-Open No. 58-30753 published on Feb. 23, 1983), and a method using a nanofiltration membrane (NF membrane) [Japanese Patent Laid-Open No. 11-192481 published on Jul. 21, 1999].
Since TAAH-containing developers recovered by these methods contain no substantial surface-active substances, however, they are highly hydrophilic solutions. Even where a surfactant is contained in a virgin developer, the recovered TAAH-containing developer has a decreased surfactant concentration, which makes it difficult to secure a surface-active effect comparable to that of the virgin developer, thereby posing a problem that it cannot be reused as a developer in the same development step as it is.
Accordingly, an object of the present invention is to provide process and equipment for recovering a developer from a photoresist development waste and reusing it, which can give a rejuvenated developer capable of stably and effectively developing fine patterns of a photoresist by proper adjustment and control of the surface-active effect (wetting properties) of a TAAH-containing solution recovered from the development waste.
SUMMARY OF THE INVENTION
The present invention provides a process for recovering a developer from a photoresist development waste and reusing it; comprising separating impurities including photoresist from a photoresist development waste for recovering a tetraalkylammonium hydroxide solution, and mixing the recovered tetraalkylammonium hydroxide solution with a surface-active substance.
Since the TAAH-containing developer is hydrophilic as against the hydrophobic photoresist, the interfacial affinity therebetween is so weak that photoresist films become harder to effectively develop not only in the horizontal direction but also in the depthwise direction as the patterns of development become finer. In view of this, there are developers admixed with a surface-active substance such as a surfactant with the aim of weakening the surface tensions of the developers as described before. Meanwhile, the development waste discharged from the development step of using a TAAH-containing developer contains the dissolved photoresist component. This photoresist component has a surface-active effect because it is a water-soluble polymeric substance.
In the conventional methods of recovering and reusing a TAAH-containing developer, however, part or the whole of any surface-active substances including the photoresist component is removed. This will be described below in connection with individual unit operations usable in these methods. (1) Since surface-active substances such as a photoresist and a surfactant, even if endowed with an electric charge, are hardly concentrated in either electrodialysis or electrolysis because these comparatively high molecular weight substances do not migrate through a diaphragm such as an ion exchange membrane. This is particularly true of nonionic surface-active substances, which migrate such a diaphragm only slightly by diffusion. (2) A surface-active substance having an electric charge is removed by an ion exchange resin. (3) Surface-active substances are generally adsorbed on activated carbon. (4) Surface-active substances are removed into concentrate with a nanofilter because they are high in molecular weight.
In view of the foregoing, according to the present invention, the recovered developer stripped of any surface-active substances including the photoresist component is mixed with a suitable amount of a surface-active substance such as a surfactant or the photoresist to adjust the surface tension thereof to a predetermined one, and then reused as a developer.
The usable surface-active substance to be mixed, though varied depending on the development step and the like, may usually be one or a plurality of surface-active substances selected from commercially available surface-active substances such as nonionic, anionic and cationic surfactants. Where a surface-active substance is contained in a virgin developer, the same surface-active substance as contained in that developer is desirably used.
Since the dissolved photoresist component contained in the photoresist development waste also has a surface-active effect, a photoresist-containing solution such as the photoresist development
Drodge Joseph W.
Norris & McLaughlin & Marcus
Organo Corporation
LandOfFree
Process and equipment for recovering developer from... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Process and equipment for recovering developer from..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process and equipment for recovering developer from... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2974195