Surgery – Diagnostic testing – Temperature detection
Patent
1997-04-29
1999-07-20
Hindenburg, Max
Surgery
Diagnostic testing
Temperature detection
600365, A61B 1000
Patent
active
059249960
DESCRIPTION:
BRIEF SUMMARY
BACKGROUND OF THE INVENTION
1. Technical Field
The present invention relates to an electronic device for detecting interaction between the human body and the invented device permitting noninvasive determination of the glucose concentration in parts of the human body, in particular, in the human blood.
2. State of the Art
1.1 Physical Background
1.1.1 Heat and Temperature
Heat or rather thermal energy is the sum of the individual kinetic energy of the components of the material. This mean energy is the same for all particles, although independent of its mass:
Temperature is only another measure for the mean kinetic energy of the molecules. If only the translation energy is considered, its mean value is given by
In this general definition of temperature m stands for the mass, <v.sup.2 > for the square average velocity of the molecules. The Boltzmann constant k has the value of
1.1.2 Temperature Measurement
Fundamentally, a temperature measurement procedure can be based on every known reproducible relationship between a material property and the temperature. In practice, e.g., the expansion of fluids, the change in electric resistors, the change in the sonic velocity in solid bodies, etc. are drawn upon for the measurement of temperature.
1.1.2.1 Thermistors and Thermo-elements
Certain thermistors and thermo-elements are particularly suited, due to their small mechanical dimensions, for temperature measurement within the scope of the present invention.
In most semiconductors, the temperature coefficient of the electric resistance is negative (high-temperature conductor, or "NTC-resistor" or called in short "NTC" <negative temperature coefficient>).
Thermo-elements are the electric thermometers most frequently employed in the temperature range of 1 K to 3000 K. Although the measurement uncertainty is larger than that of the resistors, the thermo-elements are much easier to produce, have small spatial dimensions, possess a short response period and are especially suited for measuring temperature differences. Voltage compensators or high-ohmic voltmeters are employed for measuring the thermo-electric voltage.
1.1.3 Mechanism of Heat Transport
Thermal energy can fundamentally be transported either by radiation, heat conduction or flow (convection).
1.1.3.1 Heat Radiation
Heat radiation is of an electro-magnetical nature such as light. It permits releasing heat even into a vacuum. This release is only dependent on the temperature of the radiating body. Heat radiation is also called temperature radiation or thermal radiation.
1.1.3.2 Heat Flow
Heat flow presupposes macroscopic movements in fluids or gases, the heat content of which is transported in this manner to other sites.
1.1.3.3 Heat Conduction
Heat conduction occurs only in material but is however not connected to its macroscopic movement, but rather to the energy transfer due to the impact between the molecules. It presupposes local differences in the molecular energy, that is, drops in temperature. Frequently, it is the heat transport which sets off this temperature drop that generally results in temporal change of the temperature distribution.
1.1.3.3.1 Heat Conduction in Insulators
In metals, heat like the electric current is transported predominantly via conduction electrons, in the insulators however, heat is transported via phonons. Phonons are respectively quanta (smallest amounts of energy) of elastic lattice vibrations of the wavefield generated therefrom. Just as the heat content of a solid body can be considered the energy of its phonon gas, heat conduction therein occurs as the transport phenomenon in the phonon gas. Thermal energy can be transported in a gas in two ways: surroundings like in a heat exchanger, or gradient, with the gas being in a thermal equilibrium with its surroundings at every site.
Only the second procedure (b) is heat conduction. The heat conductivity is the proportional constant between heat flow and T-gradient.
1.2 Physiological Background
1.2.1 Biological Rhythms of Blood Glucose
Close-mesh blood glucose day
REFERENCES:
Optical Engineering, "Infrared Radiometry of Thermally Insulated Skin for the Assessment of Skin Blood Flow" by Meir Nitzan et al, Sep. 1994, vol. 33, No. 9, pp. 2953-2956.
Proceedings of the Ninth Annual Conference of the IEEE Engineering in Medicine and Bilogy Society, "Microwave Thermal Imaging by Passive Radiometry" by A. Mamouni et al., Nov. 1987, vol. 4, pp. 1935-1936.
Diabete & Metabolisme, "Facial and Sublingual Temperature Changes Following Intravenous Glucose Injection in Diabetics" by R.M. Hillson et al., 1982, vol. 8, pp. 15-19.
Cho Ok Kyung
Holzgreve Birgit
Hindenburg Max
OK Kyung Cho
LandOfFree
Process and device for detecting the exchange of heat between th does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Process and device for detecting the exchange of heat between th, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process and device for detecting the exchange of heat between th will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-1317122