Process and device for applying sections of material on a...

Adhesive bonding and miscellaneous chemical manufacture – Methods – Surface bonding and/or assembly therefor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C156S238000, C156S249000, C156S256000, C156S265000, C156S270000, C156S299000, C156S519000, C156S552000

Reexamination Certificate

active

06294037

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a method and a device for joining a first web material to a second web material, in which the first web material is divided into individual sections of a predetermined length while the second web material is continuous. In particular the sections of the first web material are semi-hard or hard magnetic sections, and the second web material is a soft magnetic web material (deactivatable security elements). It is possible, however, for the sections of the first web material to also be sections of a soft magnetic material and for the second web material to be a continuous substrate made of paper or plastic, for example (non-deactivatable security elements).
BACKGROUND OF THE INVENTION
Soft magnetic materials (e.g., Permalloy) are characterized by high permeability and low coercive forces. They are being used increasingly for electronic article surveillance in department stores and warehouses. For this purpose an alternating magnetic field is emitted into a monitoring zone located preferably in the entrance/exit area of the establishment under surveillance. This field excites the soft magnetic material of the electronic security element so that it emits a characteristic signal. This signal is then detected by a detecting device sensitive to the signal's frequency range and evaluated as an identification signal for merchandise passing the monitoring zone in an unauthorized manner; an alarm is triggered.
The detecting device should no longer respond, of course, once the merchandise has been rightly purchased. This purpose is fulfilled by semi-hard or hard magnetic sections in strip form. Semi-hard or hard magnetic material (e.g., SEMIVAC from the company Vacuumschmelze) displays a relatively high coercive force. As a result of this high coercive force, the alternating magnetic field in the monitoring zone has no effect on the deactivator material in the non-deactivated state. On the other hand, as soon as the deactivator material is driven to saturation by a suitably strong magnetic field—as occurs after the product is rightly purchased—its magnetization prevents the soft magnetic material from responding to the alternating magnetic field in the monitoring zone.
Deactivatable security elements are used in large quantities. Typically, each security element is employed only once for article surveillance, so economical production is a special concern.
From German Patent DE 42 23 394 A1, there is known a method for the production of security labels which includes the following production steps: A hard magnetic metal strip is adhered to a non-metallic ribbon, and a carrier foil of high flexibility in thickness is then adhered to the metal strip. In particular the carrier foil is of a thickness and flexibility suitable to make deformation of the metal strip by a rotating cutter sufficient to sever the metal strip into individual sections. The severed sections of metal strip and non-metallic ribbon are delaminated from the carrier foil, and a soft magnetic ribbon is subsequently applied to the remaining parts of the metal strip. To produce a finished label ribbon, label paper is adhered—as is generally customary—to one side of the ribbon and a carrier ribbon to the other side.
This known method is doubtless ideally suited for supplying large numbers of security elements. Less satisfactory is, however, the relatively high effort needed to manufacture the semi-hard or hard magnetic sections and to apply them to the soft magnetic strips. The waste of semi-hard or hard magnetic material as a result of the cutting operation is also a disadvantage.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a method and a device permitting sections of a first web material to be applied without waste to a second web material. In particular—as previously mentioned—the sections of the first web material involve semi-hard or hard magnetic sections, while the second web material is a soft magnetic web material. It is also possible, however, for the sections of the first web material to be sections of a soft magnetic material, and for the second web material to be a continuous substrate fabricated from paper or plastic, for example.
With regard to the method, this object is accomplished by applying the first web material to a substrate, by separating every two successive sections of the first web material from each other so that they are spaced by a predetermined relative distance a, and by applying the sections to the second web material at the relative distance a.
An advantageous further aspect of the method of the present invention provides for the substrate to be made of an extendible material and to have a width smaller than, equal to or greater than the width of the first web material.
In the use of an extendible substrate, it has proven to be particularly advantageous for the width of the extendible substrate to be no bigger than the width of the first web material. The first web material is subsequently simply divided into individual sections while the substrate is preserved as a continuous layer. Preferably, the semi-hard or hard magnetic web material can be severed into individual sections by means of a laser.
An alternative aspect of the method of the present invention provides for having the substrate wider than the first web material and dividing the first web material and the substrate into individual sections at least across the width of the first web material. In this case the substrate can also be extendible, but this property is of no relevance in the performance of the method.
An advantageous further aspect of the method of the present invention provides for the substrate in the area of the divisions in the first web material to be stretched so that the sections of the first web material are spaced from each other by a desired distance. This stretching of an unprocessed substrate is only possible, of course, if the substrate is made of a stretchable material of sufficiently high tear resistance.
To produce a gap between the individual sections of the semi-hard or hard magnetic web material in cases where a non-extendible substrate is used it is necessary to divide the first web material and the substrate into individual sections at least across the width of the first web material. Subsequently, the first web material and the substrate are pulled apart in the area of the divisions so that the individual sections are at a desired relative distance.
An advantageous aspect of the method of the present invention provides for a further material strip to be applied to the laminate. This strip, which is fabricated from plastic, for example, serves to turn the laminate as such into a compact unit. In particular this prevents individual sections of the first or second web material from becoming detached during a subsequent longitudinal cutting operation.
Production costs can be minimized—as was previously indicated—by cutting the finished laminate in the longitudinal direction and hence into strips. This feature permits the use of accordingly wide and hence easy-to-process first and second web materials.
With regard to the device, the object of the present invention is accomplished by providing a cutting station and an additional station, wherein the first web material applied to a substrate is divided in the cutting station into individual sections or the first web material and the substrate are divided in the cutting station into individual sections at least across the width of the first web material, wherein the additional station is used for pulling the individual sections of the first web material apart, and wherein the additional station is associated with a laminating device in which the relatively spaced sections of the first web material are applied to the second web material.
Advantageously, each individual station comprises at least one pair of rolls.
An advantageous further aspect of the device of the present invention suggests constructing one roll of the pair of rolls in the additional station as a gu

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process and device for applying sections of material on a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process and device for applying sections of material on a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process and device for applying sections of material on a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2493363

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.