Tobacco – Smoke separator or treater – By chemical reaction – e.g. – ion-exchange – chelating,...
Reexamination Certificate
2001-08-30
2004-09-28
Walls, Dionne A. (Department: 1731)
Tobacco
Smoke separator or treater
By chemical reaction, e.g., ion-exchange, chelating,...
C131S332000, C131S207000, C131S202000, C131S331000
Reexamination Certificate
active
06796312
ABSTRACT:
FIELD OF INVENTION
The present disclosure relates to novel tobacco filters and their use in determining the relative “safety” of tobacco products. The tobacco filters of the present disclosure eliminate toxic compounds found in the gas-vapor phase of tobacco smoke and reduce tar and nicotine found in the particulate phase of tobacco smoke.
BACKGROUND OF THE INVENTION
The personal and societal habit of tobacco smoking has existed for centuries, but the severity of its potential detrimental health effects has only undergone serious scrutiny in the last several decades. It is now commonly accepted that tobacco smoke contains mutagenic and carcinogenic compounds that relate to serious adverse health consequences. The presence of these compounds in tobacco smoke creates a significant cost to society by increasing health costs and causing premature mortality (currently estimated to be some 3,000,000 people per annum worldwide, 400,000 to 470,000 people per annum in the United States). The adverse affects of tobacco smoke are linked to major pathological conditions such as: cancer, cardiovascular disease, stroke, chronic obstructive lung diseases (including chronic bronchitis, asthma and emphysema), periodontal disease, etc. While recent efforts at educating consumers about the harmful effects of tobacco smoke and smoking prevention programs have been helpful, people continue to smoke despite these educational efforts to the contrary. Attempts to reduce the harmful effects of tobacco smoke have included positioning filters of varying compositions within tobacco products. Current filters that are available, such as those made from cellulose acetate have only been moderately successful at decreasing the particulate portion of tobacco smoke that contains tar and nicotine. While reduction of tar mid nicotine are believed to be helpful, conventional filters have been unsuccessful at effectively removing components within the gas-vapor portion of tobacco smoke containing the most toxic components, with the exception of activated carbon filters which are known to remove small amounts of cyanide and carbon monoxide. Additionally, the relative health benefits of removing particulate matter and toxic components in the gas-vapor phase from tobacco smoke is not well understood and its effect on the health of smokers is without standards
There is, therefore, a need for an improved tobacco filter that substantially removes the harmful components within the gas-vapor phase. There is a need for a filter that while removing the harmful components of tobacco smoke allows passage of those portions of tobacco smoke, which are taste and aroma acceptable by smokers, but not harmful to smokers and non-smokers. Further there is a need for a standard by which the relative “safety” of a tobacco product can be assessed.
SUMMARY OF THE INVENTION
The oral cavity is the primary portal of entry for tobacco smoke. This fact leads to the conclusion that the maximum impact of tobacco is best observed by direct study of tobacco's effects on biological and biochemical mechanisms within the oral cavity. When humans smoke a single conventional over-the-counter unfiltered or filtered cigarette through a Cambridge Filter interposed between the cigarette and the smoker's lips, the filter separates and removes the particulate phase from the gas-vapor phase of tobacco smoke, permitting only the gas-vapor phase to enter the mouth. The action of the retained gas-vapor phase residue on the in situ exposed inflammatory cells and biochemical parameters induces the same adverse effects as obtained for whole tobacco smoke.
Suitable filter assist devices according to this disclosure containing anion and cation exchange resins capture these toxic components contained within the gas-vapor phase of tobacco smoke and reverse these adverse effects.
Strongly acidic cation exchange resins and the bicarbonate form of strongly basic anion exchange resins alone or in combination approximately one inch to one and one-half inch long are effective at removing toxic components found in the gas-vapor phase and still allow the resulting smoke to be acceptable to the smoker. Combinations of these ion exchange resins in equal parts forming lengths of approximately one to one and one-half inch long are found to be effective and also allow the tobacco smoke to be taste and aroma acceptable. Strongly basic anion exchange resins of equal length are also effective, but because of some ammonia release are probably taste and aroma unacceptable. Activated carbon filters of equal length are also effective, but the resultant smoke is taste and aroma unacceptable. Combinations of a strongly acidic cation exchange resin and/or the bicarbonate form of a strongly basic anion exchange resin, and activated carbon are equally effective and taste and aroma acceptable. The latter three components in combination can be reduced to approximately three quarters (¾) inch length and remain effective and taste and aroma acceptable.
When cigarettes or other tobacco products are smoked the smoke first enters the mouth, is inhaled-past the pharynx, larynx, into the trachea, bronchi, and bronchioles and in many instances, deep into the alveolar tissue of the lungs. Many smokers of cigars and pipes find cigar smoke and pipe tobacco smoke too strong and tend not to inhale deeply or not at all. In these individuals, the mouth and pharynx are most directly exposed to the tobacco smoke. Cigarette, cigar and pipe tobacco smokers exhale each product's smoke either primarily through and from the mouth or secondarily through and from the nose into the environment. Therefore the oral cavity serves as the ideal open capture system and trap for tobacco smoke to enable the direct detailed study of acute adverse biological effects of toxic substances in smoke.
Following direct exposure of the mouth to the impact of whole tobacco smoke (puffing one conventional over the-counter unfiltered or filtered cigarette without limiting the number of puffs, without inhaling, while exhaling from the mouth and occasionally from the nose), the retained residue of whole tobacco smoke is captured in the mouth. The oral retained residue of whole tobacco smoke can be recovered in lavages of the oral cavity yielding fluid-cell harvests that show:
1) Inhibition of the function of the essential first line of defense cell of the host immune system, the polymorphonuclear neutrophil;
2) Inhibition of the aerobic endogenous, aerobic (d) glucose dependent and anaerobic (d) glucose dependent metabolism of oral fluid-cell harvests containing these cells; and
3) Inhibition of myeloperoxidase, the essential bacterial kill and toxin-detoxifying enzyme of the neutrophil and other enzyme systems contained in oral fluid-cell harvests.
The oral cavity provides sensitive and significant in vivo open bioassay and biochemical assay systems as biomarkers for detecting, tracing, measuring and eliminating acute effects of undesirable substances present in the gas-vapor phase of tobacco smoke.
Components derived from the human oral cavity offer the opportunity to assess essential, sensitive biological and biochemical parameters as biomarkers for the direct study of tobacco smoke. These components can be used to asses the following: 1) to evaluate the potential of real deleterious effects of tobacco smoke; 2) to determine which substances in tobacco smoke are toxic in situ; 3) to determine the relative toxicity of different substances in tobacco smoke; and 4) to develop reliable new tobacco smoking products (for example, incorporating new tobacco filter assist devices) that are capable of reversing or eliminating the adverse effects of over-the-counter smoking products. Filtered tobacco smoke puffed through filter devices as propounded herein provide smoke purged of major toxic substances contained in its gas-vapor phase and substantial reductions of its tar and nicotine that result in a “safer” smoke as the purported goal by the Institute of Medicine and the Food and Drug Administration. The removal of these harm
Brown Rudnick Berlack & Israels LLP
Leonardo Mark S.
Serio John C.
Walls Dionne A.
LandOfFree
Process and apparatus for the removal of toxic components of... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Process and apparatus for the removal of toxic components of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process and apparatus for the removal of toxic components of... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3201319