Probe pin for testing electrical characteristics of...

Electricity: measuring and testing – Fault detecting in electric circuits and of electric components – Of individual circuit component or element

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C324S1540PB

Reexamination Certificate

active

06724208

ABSTRACT:

The present patent application claims the benefit of earlier Japanese Patent Application No. 11-363317 filed Dec. 21, 1999, the disclosure of which is entirely incorporated herein by reference.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a probe pin for testing electric characteristics of an apparatus, such as a semiconductor integrated circuit, an LCD, a magnetic recording device, or the like, and to a method for fabricating the probe pin. The invention also relates to a probe card using a set of probe pins.
2. Description of the Related Art
A test probe or a probe card is generally used to test the electric characteristics of a semiconductor integrated circuit printed on a wafer before the wafer is cut into chips. As the pattern of a semiconductor integrated circuit becomes fine and dense, the pitch of the probe pins have to be reduced. A fine-pitch probe can be fabricated by, for example, forming a silicon single crystal pin by a VLS (vapor liquid solid) technique (R. S. Wangner and W. C. Ellis, Appl. Phys. Lett. 4, 1996 at 89). In this technique, a metal, for example, gold (Au) is placed on a substrate, and this metal is heated in the gas phase containing the composition of the probe (that is, silicon). Then, silicon is deposited in the solid phase via the molten metal in the alloy liquid phase. This method allows a silicon single crystal probe to be formed easily and accurately at a fine pitch making use of crystal growth. Because a single crystal silicon probe has a high electric resistance, the silicon probe is generally coated with a low resistance metal, such as gold.
FIG. 1
illustrates a conventional silicon probe
100
. The silicon probe
100
has pin core
102
a
rising in the vertical direction, a silicon wiring layer
102
b
extending in the horizontal direction, a nickel-phosphorus seed layer
103
, and a gold (Au) plating layer
104
covering the seed layer
103
. The vertical pin core
102
a
, the seed layer
103
, and the plating layer
104
form an individual test pin
105
. On the other hand, the horizontal wising layer
102
b
, the seed layer
103
, and the plating layer
104
, form a lead electrode
106
for extracting an electrode from the test probe
105
. The test pin
105
is connected to an external circuit (for example, a tester) via the lead electrode
106
.
To fabricate the conventional test probe shown in
FIG. 1
, a wiring pattern corresponding to the lead electrode
106
must be formed prior to forming the single crystal silicon pin rising in the vertical direction. The wiring pattern can be formed by, for example, forming a silicon layer on a sapphire substrate
101
, coating the sapphire substrate with a photoresist, patterning the photoresist into a horizontal wiring pattern, and etching the silicon layer into the lead using the photoresist as a mask.
However, the conventional silicon probe requires a certain space around each pin in order to extract and arrange the lead on the substrate. In addition, each lead extending from the associated pin must be arranged at a certain distance from the other leads, so that signals propagating through adjacent leads will not interfere each other. These factors greatly limit the freedom of producing two-dimensional layout of a probe, especially with respects to the positions and the density of the probe pins. This limitation is a fatal obstacle to producing a fine-pitch probe for testing a highly dense circuit.
Another problem in the conventional probe set is that if the leads from the associated probes are arranged in the two-dimensional manner, the wiring length becomes inevitably long, and in addition, the lengths of the leads extending from different probes differ from one another. Consequently, variation occurs in signal transfer among different leads when measuring electric characteristics at a high frequency. The long lead causes the contact resistance to increase between the probe pin and the electrode formed on the substrate, which results in a measurement error.
SUMMARY OF THE INVENTION
Therefore, it is an object of the invention to overcome the problems in the prior art technique, and to provide a probe pin for testing electric characteristics of an apparatus, such as a highly integrated semiconductor circuit.
It is another object of the invention to provide a probe assembly, which is a combination of a probe pin and an electrode connected to the base of the test probe. This probe assembly allows the pitch of probe pins to be reduced when a number of pins are arranged on a board, and the lengths of the leads from the probes can be made almost equal. The probe assembly has a low contact-resistance, and is suitable to measurement at a high frequency.
It is still another object of the invention to provide a probe card with a superior high-frequency characteristic, which is brought into contact with a high-dense semiconductor wafer to collectively test electric characteristics of the integrated circuits formed on the wafer.
It is still another object of the invention to provide a method for fabricating a probe pin for testing electric characteristics of, for example, a semiconductor circuit, and having a superior high-frequency characteristic.
To achieve the objects, a probe pin for testing electric characteristics of an apparatus comprises a silicon pin core, and a conductive layer covering the entire surface of the silicon pin core. In this text, “covering the entire surface” means that not only the tip or the side face of the silicon pin, which is brought into direct contact with an integrated circuit to be tested, but also the bottom face of the silicon pin core is coated with the conductive layer. By coating the bottom face of the silicon pin, the bottom face of the silicon pin is connected directly to the electrode placed in the print wiring board, which is further connected to a tester. The direct connection between the bottom face of the silicon pin and the electrode eliminates the necessity of leads extending from the side face of the associated silicon pins in a two-dimensional plane. Consequently, the density of the silicon pins is greatly increased when multiple pins are arranged on a wiring board.
The probe pin can be used to test or evaluate various electric characteristics of an apparatus, such as a semiconductor device, a liquid crystal display (LCD), a magnetic recording device, and so on. For example, electric characteristics of a semiconductor device include, but not limited to logical characteristic of a logic circuit, voltage-current characteristic, threshold voltage of MOSFET, driving current, gate leak current, hot carrier resistivity, short fault or breaking fault of interconnections, wiring resistance, and capacitance.
The silicon pin may have a metal silicide layer on the bottom face. The metal silicide facilitates plating a conductive layer on the bottom face of the silicon pin. The metal silicide has an alloy-forming temperature below an alloy-forming temperature of silicon and the conductive layer. Such a metal silicide includes, but is not limited to nickel silicide (Ni
2
Si), platinum silicide (PtSi, Pt
2
Si), and lead silicide (Pb
2
Si).
In another aspect of the invention, a probe assembly, which comprises a probe pin and an electrode positioned directly below and connected to the bottom of the probe pin, is provided. The probe pin comprises a silicon pin core and a conductive layer covering the entire surface of the silicon pin core. The significant feature of the probe assembly is that no leads or extracted electrodes are required.
The silicon pin core may have a metal silicide at its bottom. In this case, the metal silicide has an alloy-forming temperature below an alloy-forming temperature of the conductive layer and silicon. The electrode is connected to the bottom of the probe pin by soldering, or using a bonding agent or a resin.
In still another aspect of the invention, a probe card is provided. The probe card comprises one or more probe pins and a print wiring board having one or more electrode, each electrode be

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Probe pin for testing electrical characteristics of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Probe pin for testing electrical characteristics of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Probe pin for testing electrical characteristics of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3240207

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.