Probe for combined signals

Electricity: measuring and testing – Fault detecting in electric circuits and of electric components – Of individual circuit component or element

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C324S759030

Reexamination Certificate

active

06806724

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to probe measurement systems for measuring the electrical characteristics of integrated circuits and other microelectronic devices tested by simultaneously applying a direct current and a modulation signal to the device-under-test.
There are many types of probing assemblies that have been developed for measuring the characteristics of integrated circuits and other forms of microelectronic devices. One representative type of assembly uses a circuit card on which are formed elongate conductive traces that serve as signal and ground lines. A central opening is formed in the card, and a needle-like probe tip is attached to the end of each trace adjacent the opening so that a radially extending array of downwardly converging needle-like tips is presented by the assembly for selective connection with the closely spaced contact pads of the microelectronic device being tested. A probe assembly of this type is shown, for example, in Harmon U.S. Pat. No. 3,445,770. This type of probing assembly, however, is unsuitable for use at higher frequencies, including microwave frequencies in the gigahertz range, because at such frequencies the needle-like tips act as inductive elements and because there are no adjoining elements present to suitably counteract this inductance with a capacitive effect in a manner that would create a broadband characteristic of more or less resistive effect. Accordingly, a probing assembly of the type just described is unsuitable for use at microwave frequencies due to the high levels of signal reflection and substantial inductive losses that occur at the needle-like probe tips.
One type of probing assembly that is capable of providing a controlled-impedance low-loss path between its input terminal and the probe tips is illustrated in Godshalk et al., U.S. Pat. No. 5,506,515. The probe has a tip assembly including a semi-rigid coaxial cable with a Teflon™ dielectric and a freely-suspended end. An inner finger and an outer pair of fingers are mounted on the freely-suspended end of the cable. Each of the fingers is made of resilient conductive material, so as to form a coplanar transmission line. Cantilevered portions of the fingers extend past the end of the cable to form an air-dielectric transmission path of uniform and stable characteristics despite exposure to numerous contact cycles. The fingers provide a suitable means for probing nonplanar wafer contact pads while promoting good visibility in the area of the contact pads. The characteristic impedance of typical microwave probes and cables is approximately 50 ohms closely matching the impedance of the typical microwave device-under-test (DUT) so broadband signals can travel through the probe with minimal loss.
However, when testing certain devices, such as laser diodes, the use of a typical microwave probe is problematic. Laser diode testing requires simultaneous application of a modulation signal and a DC electrical current to a contact pad of the device to generate a modulated light output. For testing, the modulation signal is typically a swept frequency sinusoid (AC) or a wide bandwidth pulsed waveform. The DC and modulation signals are superimposed and the combined signals are conducted to a contact tip of a probe in selective engagement with the contact pad of the DUT. Typically, the impedance seen by the modulation signal, the dynamic resistance of an active laser diode, for example, is on the order of five ohms. As a result, there is a significant impedance mismatch with the typical microwave probe and cable and the mismatched impedance distorts the modulation signal measured by the test instrumentation. While some instrumentation, such as a Vector Network Analyzer (VNA), can be calibrated to correct for distortion, the distortion can substantially affect measurements made with other instrumentation. Further, the distortion can have a magnitude sufficient to attenuate the modulation signal at some frequencies, causing a loss of dynamic range and accuracy for the measurements, even when made with a VNA.
To improve the impedance matching and reduce distortion of the modulation signal, an impedance matching resistor can be installed in series with the contact tip of a microwave probe. For testing laser diodes, the typical series impedance matching resistor has a value of 45 ohms, which in series with the five ohm dynamic resistance of a typical laser diode, provides a satisfactory impedance match with the probes and cables (≈50 ohms) to substantially reduce distortion of the test signals. Resistors with other values can be incorporated into the probe to match impedance when testing other types of devices. However, since the modulation signal and the DC current are superimposed on the same conductor, both signals must pass through the series impedance-matching resistor which dissipates power equal to the product of the resistance and the square of the current. For DUTs requiring higher current levels, the power that must be dissipated by the resistor is substantial. On the other hand, to pass high frequency signals, the resistor must small in size and the distance between the resistor and the contact tip must be short to minimize parasitic series inductance and shunt capacitance. The performance of a probe with a series impedance matching resistor is compromised by the competing necessities of sufficient resistance to match the impedance of the probe and cables and minimized resistance to minimize the voltage drop and the power dissipated by the resistor.
What is desired, therefore, is a probing system and method having minimal resistance to minimize voltage drop and power dissipation combined with adequate resistance to match the impedance of the probe and cables to minimize modulation signal distortion when a direct current and a modulated signal are simultaneously applied to a DUT.


REFERENCES:
patent: 4697143 (1987-09-01), Lockwood et al.
patent: 4891584 (1990-01-01), Kamieniecki et al.
patent: 5506515 (1996-04-01), Godshalk et al.
patent: 6211663 (2001-04-01), Moulthrop et al.
patent: 6215295 (2001-04-01), Smith, III
patent: 6605941 (2003-08-01), Abe
“Air Coplanar™ Probe Series,” 2000, Cascade Microtech Inc., Beaverton, Oregon.
“Electro-Optical Component Test,” 2001, Cascade Microtech Inc., Beaverton, Oregon.
“Laser Diode Test Solution,” unknown, www.cascademicrotech.com/index.cfm/fuseaction/pg.view/pID/136, Cascade Microtech Inc., Beaverton, Oregon.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Probe for combined signals does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Probe for combined signals, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Probe for combined signals will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3295191

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.