Compositions: coating or plastic – Coating or plastic compositions – Marking
Reexamination Certificate
2001-04-20
2003-09-23
Bell, Mark L. (Department: 1755)
Compositions: coating or plastic
Coating or plastic compositions
Marking
C106S031600, C106S031680, C106S031750, C106S031860, C106S031740, C106S031690
Reexamination Certificate
active
06623553
ABSTRACT:
TECHNICAL FIELD
The present invention relates to decorated food articles and methods for making them. More particularly, the invention relates to an edible ink composition, as well as a printing process for making a decorated food article with the ink composition.
BACKGROUND
The mass-market appeal of movie, television, and sports has created a demand for confections and other food articles with multi-colored decorations bearing the likenesses of media figures. Bakeries, supermarkets and other food retailers have used increasingly sophisticated printing techniques to create these images on food articles.
For example, in a screen printing process, positive images are created from an artwork design. Using this positive image, printing screens are exposed and developed to include a negative image of the artwork design. A first color of an edible ink is then sprayed through the screen and onto a surface of a substrate, typically an icing layer or a sugar sheet, to form an image layer on the surface of the substrate. This step is repeated, one color at a time, until the multi-colored image is formed on the surface of the substrate. In another well known process, a first color of an edible ink may be applied to a pad of an automatic pad transfer printer. The pad is then contacted with a hard, non-porous surface of an icing layer on a confection to form an image layer thereon. This step is repeated, one color at a time, until a multi-colored image layer is formed. In the alternative, the artwork may be electronically scanned and the image file downloaded to an ink jet printer having a cartridge filled with at least one edible ink. The ink jet printed then applies the ink to a surface of a substrate to form an image layer thereon.
These techniques are much more efficient than a hand decorating process, and have made possible the creation of larger numbers of high-quality decorated food articles for purchase by a consumer. However, these techniques are relatively slow and unsuited for high volume production of food articles.
In the commercial printing industry, lithographic printing processes are routinely used for high volume production of highly precise single or multi-colored images on paper articles. In the lithographic process, also referred to as offset, litho-offset, web and offset lithography, an ink receptive image is typed or drawn on a master or produced photographically on a sensitized photopolymer plate. An ink is applied to the imaged master or plate to form an ink layer thereon, and the master is then placed on the master cylinder of an offset printing press. The ink layer built up on the master is then transferred to a surface of a rubber blanket cylinder, and the ink layer is subsequently transferred to a paper substrate as the paper passes between the blanket cylinder and an impression cylinder.
Compared to screen printing or inkjet printing processes, lithographic printing makes possible increased production speeds, improved quality in the reproduction of fine tones, and a substantial reduction in the number of impressions required to reproduce full color images.
SUMMARY
In view of the cost and image quality advantages that lithographic printing provides compared to conventional screen printing and inkjet printing processes, it would be desirable to print food articles lithographically with edible inks. However, conventional edible inks used in screen and inkjet printing have too low a viscosity to be useful in high speed lithographic printing processes such as dry offset printing.
In one aspect, the invention is an edible ink that is capable of being used in a lithographic or other high speed printing process. This edible ink has a viscosity of about 2000 to about 16000 cp at 25° C., and may optionally include at least one soluble or insoluble pigment to provide a preferred pigment density of about 0.1 grams/liter to about 0.25 g/l and a preferred ink density of about 1.1 g/l to about 2.0 g/l.
In a second aspect, the invention is a printing process in which the edible ink is applied to an edible or inedible substrate. Preferably, the printing process is a lithographic printing process for forming an image layer on a substrate. In this process a layer of the edible ink is built up on a master, which is a photopolymer plate that includes an ink receptive image, to form an ink layer thereon. The ink layer is then transferred to a substrate in a lithographic printing press.
In a third aspect, the invention is a substrate having thereon an image layer of the edible ink.
In a fourth aspect, the invention is a decorating kit for use in printing on a surface of a substrate such as a lithographic printing master or an edible article such as a cake, candy and the like. The decorating kit includes a master or substrate and the edible ink.
The details of one or more embodiments of the invention are set forth in the description below. Other features, objects, and advantages of the invention will be apparent from the description, and from the claims.
DETAILED DESCRIPTION
The edible inks of the invention are capable of being used in a printing process to form an image layer on an edible or inedible substrate. The image layer on the substrate may include a single color or multiple colors, and should have acceptable definition, tonal value and registration to be useful as a decoration.
The edible ink preferably has a viscosity and a density sufficient to spread evenly over a master printing plate, adhere to the master printing plate, and subsequently transfer from the master to an edible article or a transfer sheet to form an image layer thereon. The viscosity of the edible ink may vary widely depending, for example, on the characteristics of the ink receptive layer on the master, the characteristics of the surface of the edible article or transfer sheet, the required drying time, and the like. Preferably, the edible ink has a viscosity of about 2000 to about 16000 cp, more preferably about 2400 to about 3100 cp, and most preferably about 2900 to about 3000 cp, as measured by a number 2 aperture Zahn cup at 25° C.
The term edible ink as used in this application refers to any composition that is suitable for human consumption and forms an image layer on an edible or inedible substrate in a commercially feasible time. Edible inks suitable for human consumption comply with applicable standards such as FD&C regulations in the United States and E.E.C. standards in the European Union.
If the edible article or transfer sheet is to be transported or stored without freezing, the edible ink may be formulated as an aqueous composition. The aqueous edible ink composition includes about 10% to about 20% by weight, preferably about 15% by weight, water, about 70% to about 80% by weight of at least one sweetener, about 5% to about 10% by weight of at least one emulsifier and/or hydrocolloid stabilizer, about 1% to about 5% by weight of a humectant, and at least one soluble or insoluble pigment. In this application, all percentages are by weight unless otherwise indicated.
The sweeteners provide flavor, enhance adherence to the printing plate (stickiness), act as pigment carriers, and function as a diluent in the ink composition. Suitable sweeteners may include, for example, glucose, sorbitol, sucrose, dextrose, and fructose, as well as artificial sweeteners such as aspartame and saccharin. A preferred ink formulation may include about 18% to about 28% by weight of glucose, about 18% to about 28% by weight sorbitol, about 18% to about 36% sucrose, and about 2% to about 6% by weight dextrose. A most preferred ink formulation may include about 23% by weight glucose, about 23% by weight sorbitol, about 27% by weight sucrose, and about 4% by weight dextrose.
The aqueous formulation of the edible ink also includes an emulsifier and/or a hydrocolloid stabilizer. These compounds act as a stabilizer and/or a thickening agent, and additionally enhance the release properties of the ink. Suitable emulsifiers include, for example, lecithin, crillet and polyoxyethylene sorbitan monostearate, which is available
Candler Andrew
Russell John
Wright Angela
Bell Mark L.
Faison Veronica F.
Fish & Richardson P.C.
LandOfFree
Printing process with edible inks does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Printing process with edible inks, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Printing process with edible inks will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3100544