Printing – Planographic – Lithographic printing plates
Reexamination Certificate
2000-08-22
2002-04-23
Funk, Stephen R. (Department: 2854)
Printing
Planographic
Lithographic printing plates
C205S153000, C205S317000
Reexamination Certificate
active
06374737
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to printing plate materials suitable for imaging by digitally controlled laser radiation. More particularly, the invention relates to printing plate materials having an electrocoated layer thereon.
BACKGROUND OF THE INVENTION
Printing plates suitable for imaging by digitally controlled laser radiation are produced commercially. However, the existing processes for making such plates are expensive and wasteful. Accordingly, there still remains a need for a more efficient and economical process of making such plates.
Laser radiation suitable for imaging printing plates preferably has a wavelength in the near-infrared region, between about 400 and 1500 nm. Solid state laser sources (commonly termed “semiconductor lasers”) are economical and convenient sources that may be used with a variety of imaging devices. Other laser sources such as CO
2
lasers and lasers emitting light in the visible wavelengths are also useful.
Laser output can be provided directly to the plate surface via lenses or other beam-guiding components, or transmitted to the surface of a blank printing plate from a remotely sited laser through a fiber-optic cable. A controller and associated positioning hardware maintains the beam output at a precise orientation with respect to the plate surface, scans the output over the surface, and activates the laser at positions adjacent selected points or areas of the plate. The controller responds to incoming image signals corresponding to the original figure or document being copied onto the plate to produce a precise negative or positive image of that original. The image signals are stored as a bitmap data file on the computer. Such files may be generated by a raster image processor (RIP) or other suitable means. For example, a RIP can accept data in page-description language, which defines all of the features required to be transferred onto a printing plate, or as a combination of page-description language and one or more image data files. The bitmaps are constructed to define the hue of the color as well as screen frequencies and angles.
The imaging apparatus can operate on its own, functioning solely as a platemaker, or can be incorporated directly into a lithographic printing press. In the latter case, printing may commence immediately after application of the image to a blank plate, thereby reducing press set-up time considerably. The imaging apparatus can be configured as a flatbed recorder or as a drum recorder, with the lithographic plate blank mounted to the interior or exterior cylindrical surface of the drum. Obviously, the exterior drum design is more appropriate to use in situ, on a lithographic press, in which case the print cylinder itself constitutes the drum component of the recorder or plotter.
In the drum configuration, the requisite relative motion between the laser beam and the plate is achieved by rotating the drum (and the plate mounted thereon) about its axis and moving the beam parallel to the rotation axis, thereby scanning the plate. Circumferentially so the image “grows” in the axial direction. Alternatively, the beam can move parallel to the drum axis and, after each pass across the plate, increment angularly so that the image on the plate “grows” circumferentially. In both cases, after a complete scan by the beam; an image corresponding (positively or negatively) to the original document or picture will have been applied to the surface of the plate.
In the flatbed configuration, the beam is drawn across either axis of the plate, and is indexed along the other axis after each pass. Of course, the requisite relative motion between the beam and the plate may be produced by movement of the plate rather than (or in addition to) movement of the beam.
Regardless of the manner in which the beam is scanned, it is generally preferable (for reasons of speed) to employ a plurality of lasers and guide their outputs to a single writing array. The writing array is then indexed, after completion of each pass across or along the plate, a distance determined by the number of beams emanating from the array, and by the desired resolutions (i.e., the number of image points per unit length.)
Some prior art patents disclosing printing plates suitable for imaging by laser ablation are Lewis et al U.S. Pat. Nos. 5,339,737 and 5,353,705 and Nowak et al. U.S. Pat. No. Re. 35,512. The disclosures of those patents are incorporated herein, to the extent consistent with our invention.
Although these prior art printing plates perform adequately, they are expensive to produce because the absorbing layer is vapor deposited onto the oleophilic polyester layer. Adhesive bonding of the polyester layer to a metal substrate also adds to the cost.
A principal objective of the present invention is to provide a printing plate material wherein a laser-ablatable layer is deposited on a substrate by electrocoating. The electrocoating process of our invention coats metal substrates at greater speed and with improved quality compared to prior art processes such as laminating, adhesive bonding, extrusion coating, and roll coating.
A related objective of our invention is to provide a process suitable for making both positive and negative lithographic plates.
Additional objectives and advantages of our invention will become apparent to persons skilled in the art from the following description of some preferred embodiments.
SUMMARY OF THE INVENTION
In accordance with the present invention, there is provided an improved process for making printing plate material suitable for imaging by laser radiation. The process of our invention is useful for making negative printing plates and for making positive printing plates.
The process of the invention makes printing plate material by coating a substrate with one or more polymeric layers. The substrate is a metal, preferably an aluminum alloy or steel. Some suitable aluminum alloys include alloys of the AA 1000, 3000, and 5000 series. Suitable steel substrates include mild steel sheet and stainless steel sheet.
An aluminum alloy substrate should have a thickness of about 1-30 mils, preferably, about 5-20 mils, and more preferably about 8-20 mils. An unanodized aluminum alloy substrate having a thickness of about 8.8 mils is utilized in a particularly preferred embodiment.
The substrate may be mill finished or, more preferably, may be further finished via roll texturing, chemical texturing, mechanical texturing, electrochemical texturing or combinations thereof. Roll texturing may be accomplished with a roll having an outer surface roughened via electron discharge texturing (EDT), laser texturing, electron beam texturing, mechanical texturing, chemical texturing, electrochemical texturing or combinations thereof. Preferred mechanical texturing technique include shot peening and brush graining. A preferred technique for roll texturing is EDT. In EDT, a plurality of arc generating electrodes are spaced from the outer surface of the roll and pulses of electron arcs are discharged against the roll outer surface. The arcs provide a generally uniform roll surface of peaks and valleys of desired dimensions. The electrodes rotate and traverse across the roll outer surface. The dimensions are controlled at least in part by the voltage level and the current level of the arcs, the length of the arc pulses, the length of time between arc pulses, and the electrode rotational speed and traverse rate. Electron discharge texturing is disclosed in U.S. Pat. Nos. 3,619,881 and 4,789,447, both being incorporated herein by reference.
When textured rolls, for example rolls subjected to EDT, are used to roll the substrate, the surface area of the substrate is increased (extended) in a non-directional manner. A preferred level of surface area extension of a nominally flat aluminum sheet (mill finished) is preferably about 0.5 to 10%. The surface of roughness (Ra) of aluminum sheet rolled with EDT treated rolls is preferably about 5 to less than 15 microinches, more preferably about 6 to about 9 microinches.
The resulting
Bennett David S.
Blake Sallie L.
Bombalski Robert E.
Bowman Kenneth A.
Guthrie Joseph D.
Alcoa Inc.
Funk Stephen R.
Klepac Glenn E.
Medar Julie W.
LandOfFree
Printing plate material with electrocoated layer does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Printing plate material with electrocoated layer, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Printing plate material with electrocoated layer will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2890008