Incremental printing of symbolic information – Ink jet – Controller
Reexamination Certificate
2001-08-06
2004-03-09
Hallacher, Craig (Department: 2851)
Incremental printing of symbolic information
Ink jet
Controller
C347S086000, C399S012000
Reexamination Certificate
active
06702417
ABSTRACT:
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT Not applicable.
FIELD OF THE INVENTION
The present invention relates to the field of printer technology and discloses a printing cartridge for use in an image printer or the like. In particular, the present invention discloses a printing cartridge which incorporates capacitance sensor identification.
BACKGROUND OF THE INVENTION
Recently, digital printing technology has been proposed as a suitable replacement for traditional camera and photographic film techniques. The traditional film and photographic techniques rely upon a film roll having a number of pre-formatted negatives which are drawn past a lensing system and onto which is imaged a negative of a image taken by the lensing system. Upon the completion of a film roll, the film is rewound into its container and forwarded to a processing shop for processing and development of the negatives so as to produce a corresponding positive set of photos.
Unfortunately, such a system has a number of significant drawbacks. Firstly, the chemicals utilized are obviously very sensitive to light and any light impinging upon the film roll will lead to exposure of the film. They are therefore required to operate in a light sensitive environment where the light imaging is totally controlled. This results in onerous engineering requirements leading to increased expense. Further, film processing techniques require the utilizing of a “negative” and its subsequent processing onto a “positive” film paper through the utilization of processing chemicals and complex silver halide processing etc. This is generally unduly cumbersome, complex and expensive. Further, such a system through its popularity has lead to the standardization on certain size film formats and generally minimal flexibility is possible with the aforementioned techniques.
Recently, all digital cameras have been introduced. These camera devices normally utilize a charge coupled device (CCD) or other form of photosensor connected to a processing chip which in turn is connected to and controls a media storage device which can take the form of a detachable magnetic card. In this type of device, the image is captured by the CCD and stored on the magnetic storage device. At some later time, the image or images which have been captured are down loaded to a computer device and printed out for viewing. The digital camera has the disadvantage that access to images is non-immediate and the further post processing step of loading onto a computer system is required, the further post processing often being a hindrance to ready and expedient use.
Therefore, there remains a general need for an improved form of camera picture image production apparatus which is convenient, simple and effective in operation. Further, there also remains a need for a simple form of portable, immediate print media on which images can be effectively reproduced.
In the parent application, there is disclosed the use of an authentication chip to provide information in connection with the print media and the media colorant that is supplied with the cartridge.
The Applicant has identified that it would be highly desirable to provide a means whereby information concerning one or both of the media and the media colorant could be supplied together with the cartridge. The reason for this is that such information could be used, in a suitable form, by a processor of such a device to enhance operation of a printing mechanism. It will be appreciated that printing mechanisms need to operate differently with different types of media and media colorant. It follows that it would be useful to supply information concerning media and media colorant to a controller of the printing mechanism so that operation of the printing mechanism could be automatically adjusted to suit the particular media and media colorant.
With suitable encryption techniques, this could be used to inhibit after-market refilling. As is well known in the field of printing technology, such after-market refilling has become a cause for substantial concern in the printing industry.
In European patent number EP 0779 497, which C1 aims priority from U.S. application no 08/573,100, incorporated herein by reference, there is disclosed a fingerprint acquisition sensor. The sensor is described as an apparatus for detecting topological variations on an object such as a finger. The apparatus includes an array of sensing elements disposed on a substrate which each have a parasitic capacitance. An insulating material that covers the sensing elements defines a receiving surface. When a finger is placed on the receiving surface, the capacitance of the sensors changes. A fingerprint comprises ridges and valleys. It will be appreciated that when the finger is positioned on the surface, the ridges create a greater change in capacitance than the valleys. Thus, data representing the fingerprint can be generated using suitable algorithmic electronic circuits. The fingerprint sensor is in the form of a ceramic metal oxide semiconductor (CMOS) device.
U.S. Pat. No. 6,049,620 also C1 aims priority from U.S. patent application Ser. No. 08/573,100. This patent discloses a fingerprint-sensing device comprising a planar array of closely spaced capacitive sense elements. The sense elements serve to measure a capacitance between the finger and a single electrode in each sense element. In this patent, each electrode or capacitor plate is charged and then a known current source is used to remove an amount of charge from each plate to measure the capacitance. The measured capacitance varies as a function of a distance between the finger surface and the capacitor plate. Thus, the distance between the finger surface and each capacitor plate can be determined. The distance measurements are used to produce a representation of a pattern of ridges on the finger surface.
Applicant has identified a manner in which this form of technology can be applied to achieve a means whereby printing cartridges can be provided with suitable identification data.
SUMMARY OF THE INVENTION
According to a first aspect of the invention, there is provided a printing cartridge that comprises
a housing; and
an actuating formation that is positioned on the housing and is capable of actuating a number of capacitive sensors in an array of such sensors, the actuating formation being configured to represent data relating to at least one of: a serial number of the cartridge, a media and a media colorant, so that the capacitive sensors, when actuated, together generate a signal carrying such data.
According to a second aspect of the invention, there is provided a method of determining a media colorant of a printing cartridge, the method comprising the step of actuating a number of capacitive sensors within an array of such sensors with an actuating formation positioned on the printing cartridge, the actuating formation representing data relating to a media colorant in the cartridge, so that the capacitive sensors, when actuated, generate a signal carrying data relating to the media colorant.
According to a third aspect of the invention, there is provided a printing cartridge that comprises
a housing;
a media colorant supply arrangement positioned within the housing and containing a supply of media colorant; and
an actuating formation positioned on the housing and being capable of actuating a number of capacitive sensors in an array of such sensors, the actuating formation being configured to represent data relating to the media colorant so that a signal generated by the capacitive sensors, when actuated, carries said data relating to the media colorant.
According to a fourth aspect of the invention, there is provided a method of determining media of a printing cartridge, the method comprising the step of actuating a number of capacitive sensors in an array of such sensors with an actuating formation positioned on the printing cartridge, the actuating formation representing data relating to a media in the cartridge, so that the capacitive sensors, when actuated, generate a s
Hallacher Craig
Silverbrook Research Pty Ltd
LandOfFree
Printing cartridge with capacitive sensor identification does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Printing cartridge with capacitive sensor identification, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Printing cartridge with capacitive sensor identification will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3277453