Printing apparatus with dot-gain compensation using spatial...

Incremental printing of symbolic information – Electric marking apparatus or processes – Electrostatic

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C347S232000

Reexamination Certificate

active

06717601

ABSTRACT:

FIELD OF THE INVENTION
This invention generally relates to apparatus for printing halftone images and more particularly relates to an apparatus and method for modifying halftone dot size for an image processed by an imaging apparatus.
BACKGROUND OF THE INVENTION
In a digital printing workflow there is a need to be able to proof bitmap files used to make printing plates. Presently, customer artwork consisting of contone images, linework, and text, is first sent to a digital halftone proofer or inkjet printer. The artwork is corrected until the proof is approved for the press. In the case were the artwork is proofed on a digital halftone proofer such as described by Baek et al. in U.S. Pat. No. 5,164,742, the raster image processor (RIP) adjusts the input continuous tone data using a calibration dot-gain curve such that the tone-scale of the proof matches the tone-scale of the press-sheet. After the proof is approved, the job is sent to a second RIP which applies a second dot-gain curve for generating the plate used in the press-run.
The first and second RIPs may be the same but are typically separate and may be located apart from each other. The first and second RIPs are preferably the same type and version such that the halftone dots created and algorithms used by each device are an exact match. Many times the two RIPs are not an exact match, which can create problems. Sometimes incorrect dot-gain correction files are used. Sometimes the artwork is changed in-between creating the proof and the plates and the press-run no longer matches the approved proof.
Another disadvantage in the current system is that an error in the creation of the bitmaps for printing is not known until the plates are loaded onto the press and the press-run is started. For a press capable of over 1,000 impressions per hour considerable amount of production is lost if the plates are found to be corrupt and need to be remade.
An important aspect in creating a halftone proof is predicting dot-gain or tone-scale. Dot-gain is a known phenomenon attributable to ink spread, ink absorption by the print media, and optical effects between the ink and the paper. The dot-gain varies with the size and shape of the halftone dots, the printing device, the inks, and the paper used, etc. For a digital proof, halftone dots in a color separation are composed of micro-pixels that give the halftone dot its shape and size. Dot-gain for a digital proof corresponds to increasing dot size by adding micro-pixels. Dot-loss for a digital proof corresponds to decreasing dot size by eliminating micro-pixels. Dot-gain correction consists of adding and subtracting gain to match the response at different percent dot inputs.
In the printer described by Baek et al. many steps are required to match the press. First the exposure for each color plane is adjusted to match the solid area density. Second the dot-gain for each color plane is adjusted to achieve a dot-gain match at different halftone tint levels. Third the dot-gain curves and density levels may be fine tuned to achieve either a good neutral match in the three color overprints or a color match for flesh tones. For some work, other memory colors such as green grass or light blue sky may be matched as the critical color. Finally the dot-gain curves may be further adjusted to deliver better performance in the highlight, or shadow areas. These steps are critical and typically take much iteration between the proof operator and the customer to achieve the look that the customer desires. It is important to be able to adjust the proofer to achieve this look as there are other controls on the press that may be adjusted to effect the dot-gain and tonal control of the press-run. By adjusting the performance of the proofer, the customer is selecting the quality of the proofs that will be used by the pressmen to match.
Once the proofer has been setup to match the press, the customer uses subsequent proofs to setup the press. This is an important point. The proofer setup is used to simulate the press such that the pressman may then use the proofs to setup the press to achieve the customer's intent. Every job going through the proofer will be adjusted with a setup. There may be different setups for each press or press type. There may also be different setups for different customers using the same proofer. Finally there may also be standard setups that are used to simulate jobs across many different presses.
The same job is typically “ripped” again when going to press. This time the RIP is programmed to generate 50% area coverage on plate for the 50% color input. The press is then run to deliver a fixed amount of gain at the 50% input level. Dot-gain is due to the smearing of the ink from the plate to a blanket, the smearing of ink from the blanket to the job paper, and the optical gain of the ink on top of the paper. The control is usually split between the plate making device delivering 50% area coverage for a 50% input, and the press delivering 50% plus its intrinsic dot-gain. Typical dot-gain levels for a Web-fed offset press are 15% to 25% at the 50% input level. Because the dot-gain occurs on the press instead of at the plate writer the bitmaps used to create the plate will not contain enough gain to make the proof. Proofs made from these bitmaps will be washed out and the contrast will be significantly reduced. Colors will also shift, as the gain in each color will be proportional to the dot area coverage.
Other digital halftone printing devices such as that disclosed by Michalson in U.S. Pat. No. 6,204,874 use a binary proofing media that does not allow for adjusting the density level of the solid colorants. A different process is used to adjust these devices for a close press match, including adjusting the tone-scale or dot-gain curve used to make the bitmap file. However the ideal dot-gain curve on these systems is still different from the dot-gain curves used to make the plates. Even if the same machine is imaging the plate and the proof as disclosed by Michalson.
Inkjet printing devices are also sometimes used to make a proof. These devices typically image from 300 dpi to 1440 dpi writing resolutions using multiple cyan, magenta, yellow, and sometimes black inks. In addition software such as “Best Screen Proof” available from Best Gmbh, or Black Magic available from Serendipity Software Pty Ltd., may be used to simulate the printing of a halftone screen. This software attempts to measure the halftone screen and adjust the printed output to achieve a close color match to a given target. Resolution of the inkjet devices does not allow for a good match of the halftone dot structure. The color match developed does simulate the tone-scale or dot-gain correction, but only through the driving of the overlapping colors on the proof. The quality of the halftone in the printed proof is significantly compromised. Dots in the highlight and shadow areas are destroyed in trying to match the overall density level in these systems. This is because the inkjet output drops are too large. Therefore one inkjet drop is used to replace many halftone dots in the highlight or bright areas, while one inkjet hole is used to replace many halftone holes in the shadows.
A halftone screen at 150 lines per inch, 6 lines per mm, covers an area of approximately 28,674 &mgr;m
2
. An inkjet printer with a 3 pL drop size will produce a dot with a diameter of about 25 &mgr;m covering an area of 625 &mgr;m
2
. This may vary depending upon the spread into the paper. A single inkjet drop represents a 2.18% change in area within a 150 line screen halftone. To achieve finer resolution the Best Screen Proof, and Black Magic, software use additional inks to image multi-level colorants. Typically a light cyan and light magenta ink are added to the cyan, magenta, yellow, and black primaries to achieve finer control of the tone-scale. While this creates a proof with a close visual color match, the structure of the halftone dots within the image is seriously degraded.
The conventional proofing solution, using the Kodak Approv

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Printing apparatus with dot-gain compensation using spatial... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Printing apparatus with dot-gain compensation using spatial..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Printing apparatus with dot-gain compensation using spatial... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3193839

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.