Printer with donor and receiver media supply trays each...

Recorders – Record receivers and/or driving means therefor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C347S262000, C347S264000

Reexamination Certificate

active

06628316

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention generally relates to printer apparatus and methods and more particularly relates to a printer with donor and receiver media supply trays each adapted to allow the printer to sense type of media therein, and method of assembling the printer and trays.
Pre-press color proofing is a procedure used by the printing industry for creating representative images of printed material. This procedure avoids the high cost and time required to produce printing plates and also avoids setting-up a high-speed, high-volume printing press to produce a representative sample of an intended image for proofing. Otherwise, in the absence of pre-press proofing, a production run may require several corrections and be reproduced several times to satisfy customer requirements. This results in lost profits. By utilizing pre-press color proofing, time and money are saved.
A laser thermal printer having half-tone color proofing capabilities is disclosed in commonly assigned U.S. Pat. No. 5,268,708 titled “Laser Thermal Printer With An Automatic Material Supply” issued Dec. 7, 1993 in the name of R. Jack Harshbarger, et al. The Harshbarger, et al. device is capable of forming an image on a sheet of thermal print media by transferring dye from a roll of dye donor material to the thermal print media. This is achieved by applying a sufficient amount of thermal energy to the dye donor material to form the image on the thermal print media. This apparatus generally comprises a material supply assembly, a lathe bed scanning subsystem (which includes a lathe bed scanning frame, a translation drive, a translation stage member, a laser printhead, and a rotatable vacuum imaging drum), and exit transports for exit of thermal print media and dye donor material from the printer.
The operation of the Harshbarger, et al. apparatus comprises metering a length of the thermal print media (in roll form) from the material supply assembly. The thermal print media is then measured and cut into sheet form of the required length, transported to the vacuum imaging drum, registered, and then wrapped around and secured onto the vacuum imaging drum. Next, a length of dye donor roll material is also metered out of the material supply assembly, measured and cut into sheet form of the required length. The cut sheet of dye donor roll material is then transported to and wrapped around the vacuum imaging drum, such that it is superposed in registration with the thermal print media, which at this point has already been secured to the vacuum imaging drum.
Harshbarger, et al. also disclose that after the dye donor material is secured to the periphery of the vacuum imaging drum, the scanning subsystem and laser write head provide the previously mentioned scanning function. This is accomplished by retaining the thermal print media and the dye donor material on the vacuum imaging drum while the drum is rotated past the print head that will expose the thermal print media. The translation drive then traverses the print head and translation stage member axially along the rotating vacuum imaging drum in coordinated motion with the rotating vacuum imaging drum. These movements combine to produce the image on the thermal print media.
According to the Harshbarger, et al. disclosure, after the intended image has been written on the thermal print media, the dye donor material is then removed from the vacuum imaging drum. This is done without disturbing the thermal print media that is beneath the dye donor material. The dye donor material is then transported out of the image processing apparatus by the dye donor exit transport. Additional dye donor materials are sequentially superposed with the thermal print media on the vacuum imaging drum, then imaged onto the thermal print media as previously mentioned, until the intended full-color image is completed. The completed image on the thermal print media is then unloaded from the vacuum imaging drum and transported to an external holding tray, which is associated with the image processing apparatus, by means of the print media exit transport. However, Harshbarger, et al. do not appear to disclose appropriate means for informing the printer of type of donor and receiver material loaded into the printer. It is desirable to inform the printer of type of donor and receiver material loaded into the printer in order to obtain high quality images.
Also, it is known in the printing arts that the previously mentioned dye donor roll is typically wound about a donor supply shaft to define a donor spool, which is loaded into the printer. Also, the previously mentioned receiver (in roll form) is typically wound about a receiver supply shaft to define a receiver spool, which is also loaded into the printer. However, it is desirable to match the specific type donor and receiver with a specific printer, so that high quality images are obtained. For example, it is desirable to inform the printer of the specific dye density comprising the donor, so that the laser write head applies an appropriate amount of heat to the donor in order to transfer a proper amount of dye to the receiver. This is desirable because different donor rolls can have different donor densities. Also, it is desirable to minimize the amount of hardware required to provide the cut sheets to the imaging drum. One means to accomplish this is to provide the donor and receiver to the printer in the form of pre-cut sheets packaged as cartridges.
In addition, it is also desirable to know number of frames (i.e., pages) remaining on a partially used donor or receiver cartridge. This is desirable because it is often necessary to exchange a partially used cartridge of donor or receiver for a full cartridge of donor or receiver. For example, this may be necessary to allow overnight printing when the printer must operate unattended. However, unattended operation of the printer requires precise media inventory control. That is, the printer should be preferably loaded with a full cartridge of donor material and receiver material in order that the printer does not stop printing due to lack of donor material and receiver material during an unattended extended time period (e.g., overnight printing). Therefore, a further problem in the art is insufficient donor and receiver material being present during unattended extended operation of the printer.
Currently, in order to properly calibrate the printer, an operator of the printer determines the characteristics of the donor (e.g., dye density, number of frames remaining on the donor, e.t.c.) and receiver (e.g., thickness, gloss, e.t.c.) and then manually programs the printer with this information to accommodate the specific dye donor and receiver being used. However, manually programming the printer is time consuming and costly. Moreover, the operator may make an error when manually programming the printer. Therefore, another problem in the art is time consuming and costly manual programming of the printer to accommodate the specific dye donor and receiver being used. Thus, an additional problem in the art is operator error associated with manual programming of the printer.
A donor supply spool obviating need to manually program a resistive head thermal printer with frame count information is disclosed in commonly assigned U.S. Pat. No. 5,455,617 titled “Thermal Printer Having Non-Volatile Memory” issued Oct. 3, 1995 in the name of Stanley W. Stephenson, et al. This patent discloses a web-type dye carrier for use in a thermal resistive head printer and a cartridge for the dye carrier. The dye carrier is driven along a path from a supply spool and onto a take-up spool. Mounted on the cartridge is a non-volatile memory programmed with information, including characteristics of the carrier. A two-point electrical communication format allows for communication to the memory in the device. In this regard, two electrically separated contacts disposed within the printer provide a communication link between the printer and cartridge when the cartridge is inserted into the thermal resistive head p

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Printer with donor and receiver media supply trays each... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Printer with donor and receiver media supply trays each..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Printer with donor and receiver media supply trays each... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3101128

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.