Telecommunications – Transmitter and receiver at same station – Having particular housing or support of a transceiver
Reexamination Certificate
1998-12-16
2002-01-29
Urban, Edward F. (Department: 2683)
Telecommunications
Transmitter and receiver at same station
Having particular housing or support of a transceiver
C455S193200, C343S702000, C343S860000
Reexamination Certificate
active
06343208
ABSTRACT:
BACKGROUND
The present invention relates generally to radio communication systems and, in particular, to built-in antennas which can be incorporated into portable terminals and which allow the portable terminals to communicate within different frequency bands.
The cellular telephone industry has made phenomenal strides in commercial operations in the United States as well as the rest of the world. Growth in major metropolitan areas has far exceeded expectations and is rapidly outstripping system capacity. If this trend continues, the effects of this industry's growth will soon reach even the smallest markets. Innovative solutions are required to meet these increasing capacity needs as well as maintain high quality service and avoid rising prices.
Throughout the world, one important step in the advancement of radio communication systems is the change from analog to digital transmission. Equally significant is the choice of an effective digital transmission scheme for implementing the next generation technology, e.g., time division multiple access (TDMA) or code division multiple access (CDMA). Furthermore, it is widely believed that the first generation of Personal Communication Networks (PCNs), employing low cost, pocket-sized, cordless telephones that can be carried comfortably and used to make or receive calls in the home, office, street, car, etc., will be provided by, for example, cellular carriers using the next generation digital cellular system infrastructure.
To provide an acceptable level of equipment compatibility, standards have been created in various regions of the world. For example, analog standards such as AMPS (Advanced Mobile Phone System), NMT (Nordic Mobile Telephone) and ETACS and digital standards such as D-AMPS (e.g., as specified in EIA/TIA-IS-54-B and IS-136) and GSM (Global System for Mobile Communications adopted by ETSI) have been promulgated to standardize design criteria for radio communication systems. Once created, these standards tend to be reused in the same or similar form, to specify additional systems. For example, in addition to the original GSM system, there also exists the DCS1800 (specified by ETSI) and PCS1900 (specified by JTC in J-STD-007), both of which are based on GSM.
However, the most recent evolution in cellular communication services involves the adoption of additional frequency bands for use in handling mobile communications, e.g., for Personal Communication Services (PCS) services. Taking the U.S. as an example, the Cellular hyperband is assigned two frequency bands (commonly referred to as the A frequency band and the B frequency band) for carrying and controlling communications in the 800 MHz region. The PCS hyperband, on the other hand, is specified in the United States to include six different frequency bands (A, B, C, D, E and F) in the 1900 MHz region. Thus, eight frequency bands are now available in any given service area of the U.S. to facilitate communication services. Certain standards have been approved for the PCS hyperband (e.g., PCS1900 (J-STD-007)), while others have been approved for the Cellular hyperband (e.g., D-AMPS (IS-136)).
Each one of the frequency bands specified for the Cellular and PCS hyperbands is allocated a plurality of traffic channels and at least one access or control channel. The control channel is used to control or supervise the operation of mobile stations by means of information transmitted to and received from the mobile stations. Such information may include incoming call signals, outgoing call signals, page signals, page response signals, location registration signals, voice channel assignments, maintenance instructions, hand-off, and cell selection or reselection instructions as a mobile station travels out of the radio coverage of one cell and into the radio coverage of another cell. The control and voice channels may operate using either analog modulation or digital modulation.
The signals transmitted by a base station in the downlink over the traffic and control channels are received by mobile or portable terminals, each of which have at least one antenna. Historically, portable terminals have employed a number of different types of antennas to receive and transmit signals over the air interface. For example, monopole antennas mounted perpendicularly to a conducting surface have been found to provide good radiation characteristics, desirable drive point impedances and relatively simple construction. Monopole antennas can be created in various physical forms. For example, rod or whip antennas have frequently been used in conjunction with portable terminals. For high frequency applications where an antenna's length is to be minimized, another choice is the helical antenna.
As described above, it will soon be commercially desirable to offer portable terminals which are capable of operating in widely different frequency bands, e.g., bands located in the 900 MHz region and bands located in the 1800 MHz region. Accordingly, antennas which provide adequate gain and bandwidth in both frequency bands will need to be employed in portable terminals in the near future. Several attempts have been made to create such dual-band antennas.
For example, U.S. Pat. No. 4,571,595 to Phillips et al. describes a dual-band antenna having a sawtooth-shaped conductor element. The dual-band antenna can be tuned to either of two closely spaced apart frequency bands (e.g, centered at 915 MHz and 960 MHz). This antenna design is, however, relatively inefficient since it is so physically close to the chassis of the mobile phone.
Japanese patent no. 6-37531 discloses a helix which contains an inner parasitic metal rod. In this patent, the antenna can be tuned to dual resonant frequencies by adjusting the position of the metal rod. Unfortunately, the bandwidth for this design is too narrow for use in cellular communications.
Dual-band, printed, monopole antennas are known in which dual resonance is achieve by the addition of a parasitic strip in close proximity to a printed monopole antenna. While such an antenna has enough bandwidth for cellular communications, it requires the addition of a parasitic strip. Moteco AB in Sweden has designed a coil matching dual-band whip antenna and coil antenna, in which dual resonance is achieved by adjusting the coil matching component (¼ &lgr; for 900 MHz and ½ &lgr; for 1800 MHz). This antenna has relatively good bandwidth and radiation performances and a length in the order of 40 mm. A non-uniform helical dual-band antenna which is relatively small in size is disclosed in copending, commonly assigned U.S. patent application Ser. No. 08/725,507, entitled “Multiple Band Non-Uniform Helical Antennas.”
Presently, antennas for radio communication devices, such as mobile phones, are mounted directly on the phone chassis. However, as the size and weight of portable terminals continue to decrease, the above-described antennas become less advantageous due to their size. Moreover, as the functionality of these future compact portable terminals increases, the need arises for a built-in miniature antenna which is capable of being resonant at multiple frequency bands.
Conventional built-in antennas currently in use in mobile phones include microstrip antennas and planar inverted-F antennas. Microstrip antennas are small in size and light in weight. The planar inverted-F antenna (PIFA) has already been implemented in a mobile phone handset, as described by K. Qassim, “Inverted-F Antenna for Portable Handsets”, IEE Colloqium on Microwave Filters and Antennas for Personal Communication Systems, pp.3/1-3/6, Febuary 1994, London, UK. And, more recently, Lai et al. has published a meandering inverted-F antenna (WO 96/27219). This antenna has a size which is about 40% of that of the conventional PIFA antenna.
FIGS. 1A and 1B
illustrate the conventional planar patch antenna compared to the meandering inverted-F antenna described in Lai et al. The conventional planar patch antenna of
FIG. 1A
has both a size and length equal to, for example, a quarter wavelength of th
Telefonaktiebolaget LM Ericsson (publ)
Urban Edward F.
LandOfFree
Printed multi-band patch antenna does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Printed multi-band patch antenna, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Printed multi-band patch antenna will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2855488