Prewetting stop flow test strip

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving antigen-antibody binding – specific binding protein...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S007100, C435S007320, C435S007210, C435S007920, C435S810000, C435S970000, C435S974000, C435S975000, C436S514000, C436S518000

Reexamination Certificate

active

06767710

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to lateral flow test strips and methods of operation for the lateral flow test strips.
2. Description of Related Art
Quantitative analysis of cells and analytes in fluid samples, particularly bodily fluid samples, often provides critical diagnostic and treatment information for physicians and patients. For example, immunological testing methods which take advantage of the high specificity of antigen-antibody reactions, provide one approach to measurement of analytes. Kennedy, D. M. and S. J. Challacombe, eds., ELISA and Other Solid Phase Immunoassays: Theoretical and Practical Aspects, John Wiley and Sons, Chichester (1988). This document and all others cited to herein, are incorporated by reference as if reproduced fully below. Such assays may also find use in various other applications, such as veterinary, food testing, or agricultural applications.
Immunoassays that provide a quantitative measurement of the amount of an analyte in a sample have previously used complex, multi-step procedures and expensive analyzers available only in a laboratory setting.
Immunochromatographic assays, such as those described in GB 2,204,398A; U.S. Pat. Nos. 5,096,837, 5,238,652, and 5,266,497; Birnbaum, S. et al., Analytical Biochem. 206:168-171 (1992); Roberts, M. A. and R. A. Durst, Analytical Chem. 67:482-491 (1995); and Klimov, A. D. et al., Clinical Chem. 41:1360 (1995), are simpler, yet do not provide a quantitative measurement of an analyte. Instead, these immunochromatographic assays detect the presence (or absence) of an analyte above a defined cutoff level for the test performed. The lack of a quantitative measurement limits the usefulness of these assays.
A variety of disposable diagnostic assay devices have also been developed. Examples of such devices include, but are not limited to Cathey, et al, U.S. Pat. No. 5,660,993; International Publication Number WO 92/12428; Eisinger, et al, U.S. Pat. No. 4,943,522; Campbell, et al, U.S. Pat. No. 4,703,017; Campbell, et al, U.S. Pat. No. 4,743,560; and Brooks, U.S. Pat. No. 5,753,517. Nevertheless, a need still exists for improved disposable diagnostic assay devices and methods.
SUMMARY OF THE INVENTION
Test strips are provided which are adapted to receive a buffer that prewets the test strip and receive a sample which flows within the prewet test strip. The test strips are employed to detect one or more analytes that may be present in a sample.
According to one embodiment, the test strip comprises a buffer addition zone to which a buffer is added to prewet the test strip; an absorbent zone proximal to the buffer addition zone; one or more test zones distal to the buffer addition zone, at least one of the test zones including a first analyte binding agent immobilized therein which is capable of binding to the analyte to be detected; and a terminal buffer flow zone distal to the one or more test zones, the absorbent zone being positioned relative to the buffer addition zone and having an absorption capacity relative to the other zones of the test strip such that when a volume of buffer within a predetermined buffer volume range for the test strip is added to the buffer addition zone, a distal diffusion front of the buffer diffuses from the buffer addition zone to a distal diffusion point within the terminal buffer flow zone and then diffuses proximal relative to the one or more test zones. The test strip further comprises a sample addition zone that is distal to the terminal buffer flow zone. When a sample is added to the sample addition zone, the sample diffuses within the test strip in a proximal direction across the terminal buffer flow zone, across the one or more test zones, and ultimately to the absorbent zone. When the sample traverses the test zones, analyte in the sample is immobilized in whichever test zone(s) include(s) the first analyte binding agent bound therein.
The above described test strip may be used to detect an analyte in a sample by a direct detection assay or may be used to detect an analyte in a sample by a competitive assay. When the assay is a direct detection assay, the amount of analyte in the sample is measured based on the amount of analyte which is immobilized in a test zone by a first analyte binding agent bound therein. When the assay is a competitive assay, the test strip further comprises a competitive agent which is capable of competing with the analyte for binding to the first analyte binding agent. In this instance, the amount of analyte in the sample is measured based on how much less competitive agent is immobilized in the test zone by the first analyte binding agent as compared to when a control is employed as the sample which contains no analyte.
Control over the above described flow of the buffer within the test strip (i.e., such that the buffer reaches the terminal buffer flow zone and reverses the direction of buffer flow within the terminal buffer flow zone back toward the buffer addition zone and the absorbent zone) is achieved by controlling the amount of buffer added to the test strip within a predetermined range designed to be used with that test strip.
By adding the sample to the sample addition zone such that the sample reaches the terminal buffer flow zone after the buffer has reached the terminal buffer flow zone and has already reversed direction and is diffusing back toward the absorbent zone, the sample is able to flow within a prewet test strip, thereby yielding more accurate and precise results.
As will be described in greater detail herein, depending on the layout of the test strip, the buffer may be added before, at the same time, or after the sample is added to the test strip. For example, the sample addition zone may be positioned relative to the test zones such that sample is added to the sample addition zone at the same time that buffer is added to the buffer addition zone. The sample addition zone may also be positioned relative to the test zones such that sample added to the sample addition zone at the same time that the buffer is added to the buffer addition zone. The sample addition zone may also be positioned relative to the test zones such that the sample can be added to the test strip before the buffer is added and nevertheless, the sample still reaches the distal diffusion point of the buffer after the distal diffusion front of the buffer has diffused to the distal diffusion zone, reversed direction and begun diffusing in a proximal direction.
According to any of the above test strip embodiments, 1, 2, 3 or more test zones may be control zones with one or more control binding agents immobilized therein. The control zones may be used to calibrate the test strip, may be used to confirm whether or not the test strip performed as intended, may be used detect whether too little or too much buffer was added and may be used to detect whether too little sample was added.
In one embodiment, the test strip comprises at least a first control zone with a control binding agent immobilized therein. Optionally, the test zones further includes a second control zone with a same control binding agent immobilized therein as the first control zone. The first control zone may contain the same or a different amount of the control binding agent than the second control zone. In a preferred embodiment, the first control zone contains about the same amount of the control binding agent as the second control zone.
Also according to any of the above test strip embodiments, a second analyte binding agent which is capable of binding to the analyte and diffusing to the one or more test zones may be included on the test strip. The second analyte binding agent is preferably incorporated on the test strip adjacent either the sample addition zone or the buffer addition zone, more preferably proximal relative to the sample addition zone or distal relative to the buffer addition zone such that addition of the sample or buffer causes the second analyte binding agent to be carried with the sample or buffer to the test zone

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Prewetting stop flow test strip does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Prewetting stop flow test strip, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Prewetting stop flow test strip will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3185297

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.