Pressure vessel systems and methods for dispensing liquid...

Fluid handling – Processes – Involving pressure control

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C137S208000, C137S209000, C222S399000

Reexamination Certificate

active

06736154

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention is related to chemical composition delivery systems and methods, especially to the chemical delivery systems for electronics specialty chemical compositions, including CMP slurries for wafer polishing.
2. Related Art
Process chemicals for semiconductor manufacturing are usually delivered from bulk containers to user stations with so called chemical delivery systems. High-pressure inert gases, such as nitrogen gas, have become popular for driving chemical compositions from chemical containers to user stations. Compared to the delivery systems having a pump, systems employing high-pressure inert gas for chemical delivery have the advantages of delivery from further distance, and also smooth and pulse-less delivery, thus avoiding impurity shedding from the components of the delivery system.
Although the advantages of such a chemical delivery method have been realized and the method has been practiced in large extent, some concerns and problems have arisen when some of the semiconductor process chemical compositions are delivered with this type of delivery system. For example, inert gas, such as nitrogen gas, will readily dissolve into some of these process chemicals during compression process and eventually form dry spots on wafers. These dry spots become manufacturing defects and seriously reduce the production yield of semiconductor manufacturing. To avoid and eliminate the problem of gas dissolving in chemical compositions, a new delivery system with a bladder installed inside the pressure vessel has been invented. With this method and apparatus, high-pressure nitrogen gas is filled into the bladder to pressurize chemical compositions outside of the bladder. Since there is no direct contact between the chemical composition and nitrogen gas, dissolving of nitrogen gas into chemicals is avoided. Furthermore, chemical compositions will not change in assay due to chemical evaporation.
When delivering aqueous chemical compositions using direct contact with an inert gas, such as slurry compositions used for polishing wafer surfaces, water and other chemical compounds in the chemical composition at the composition surface and composition residuals on the container surfaces will be rapidly lost into the inert gas when the high-pressure inert gas directly contacts with the chemical composition. This is because inert gases are usually very dry and very pure. Amounts of chemical compounds such as water in the chemical composition will change because of evaporation. This change in chemical composition may make the chemical composition function improperly when it is used in the semiconductor manufacturing process. When water evaporates into inert gas, a dry film or dry residuals could be formed with much less water and more concentrated compositions of less volatility. In the case of slurry compositions, this dry film or dry residuals will be in the form of agglomerated particles of larger sizes. These agglomerated particles eventually will be delivered with chemical compositions to user stations and produce scratches on wafer surfaces. This problem could be solved by using the above mentioned bladder technology by preventing the direct contact of nitrogen gas with chemical composition. With this technology, a thin and flexible material that is compatible with the chemical composition must be carefully selected for the bladder.
To overcome the shortcomings of water evaporation into inert gas, a moisturizer can be used to moisturize the nitrogen gas prior to its going into the pressure vessels to pressurize chemical compositions, such as depicted in U.S. Pat. No. 6,076,541. When the moisturized nitrogen gas contacts with chemical compositions, mass transfer of water in the nitrogen gas and the chemical composition is significantly reduced or completely eliminated. Therefore, there is no, or very little, dry residuals or dry film formed within the pressure vessels. However, there are still some drawbacks. First, more space will be needed for accommodating a humidifier near to the pressure vessel. This could be a serious problem because in a semiconductor manufacturing facility, space is always limited. Additional equipment to occupy space is not always permitted and space is not always affordable. Second, moisturized nitrogen gas may create some problems in the system operation. Since moisturized nitrogen flows through a relative long line into the pressure vessel, moisture in nitrogen gas can be condensed in the line because of changes of physical condition. This condensate could block up valves and make the valves malfunction. The condensate could also be carried further into the pressure vessel to dilute the chemical compositions. Chemical composition change by such kind of dilution is forbidden because the composition of chemical compositions must be precisely controlled to meet user's specification. Further, some chemical compositions, such as hydrogen peroxide in the chemical composition, will evaporate into high purity inert gas even though it is moisturized. Hence, chemical compositions will change when the chemical composition is delivered with such a method although such a change in chemical composition may not be a serious problem for some cases.
It would therefore be advantageous, and an advance in the chemical delivery art, if chemical delivery systems and methods could be designed that reduce or avoid the above-noted drawbacks.
SUMMARY OF THE INVENTION
In accordance with the present invention, novel and simple apparatus and methods are proposed to reduce or eliminate the problems of dry residuals and dry film during liquid chemical composition delivery with pressure vessels, as well as problems associated with previously known humidification systems. As used herein the terms “system” and “apparatus” are used interchangeably.
As used herein the term “liquid chemical composition” means:
a fluid that flows under the presence of pressure, gravity, or combination;
may be Newtonian or non-Newtonian fluid;
may be aqueous, non-aqueous or combination;
may be a combination of components (liquid, solid, and gaseous).
Preferably, liquid chemical compositions which may benefit from the present invention are substantially aqueous, Newtonian fluids having a combination of ingredients, including, in some embodiments, one or more organic compounds, such as reactive diluents, non-reactive diluents, solvents, co-solvents, coupling agents, and the like, and abrasive matter, for example dispersed in individual particles, or agglomerates of individual particles. Chemical-mechanical planarization slurries and chemical-mechanical polishing slurries are two preferred liquid chemical compositions. Suitable organic solvents might include organic alcohols, ketones, acids and the like, isopropyl alcohol, for example.
A first aspect of the invention is an apparatus for delivery of liquid chemical compositions. A first apparatus embodiment comprises:
a) a pressure vessel comprising an inlet and an outlet for a liquid chemical composition, and a vapor space, the pressure vessel adapted to contain the liquid chemical composition, the liquid chemical composition having a vaporizable portion (preferably a major portion of water) therein;
b) means for contacting (preferably bubbling) a dry, preferably high purity inert gas with at least a portion of the liquid chemical composition in the pressure vessel to transfer at least a portion of the vaporizable portion from the chemical composition to the inert gas to form a wet inert gas in the vapor space; and
c) means for pressurizing the chemical composition out of the vessel using the wet, high purity inert gas.
Preferred apparatus within this embodiment are those wherein the inlet and the outlet are each legs of a tee connection, a remaining leg of the tee connected to the pressure vessel. Also preferred are apparatus wherein the dry, preferably high purity inert gas is adapted to be sparged into the pressure vessel near a bottom of the vessel through an inert gas inlet conduit, the inert gas

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Pressure vessel systems and methods for dispensing liquid... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Pressure vessel systems and methods for dispensing liquid..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pressure vessel systems and methods for dispensing liquid... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3234261

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.