Surgery – Means for introducing or removing material from body for... – Treating material introduced into or removed from body...
Reexamination Certificate
2000-05-24
2004-01-06
Robinson, Daniel (Department: 3742)
Surgery
Means for introducing or removing material from body for...
Treating material introduced into or removed from body...
Reexamination Certificate
active
06673048
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates generally to fluid injection systems. The present invention particularly relates to a pressure sleeve for housing a syringe usable for injection of fluids in medical procedures such as angiography, magnetic resonance imaging (MRI), computer tomography (CT) and radiology. In addition, the invention relates to a pressure sleeve assembly that allows for front and/or rear loading and removal of a syringe.
BACKGROUND OF THE INVENTION
Fluid injection systems are used in numerous medical procedures that require injection of fluid into a patient. One non-limiting example of such a procedure is the treatment of coronary artery disease where an artery feeding into the heart has become obstructed or narrowed. In such conditions, an angioplasty, or stent placement, is often a prescribed treatment and in preparing for such procedures, an angiogram is performed.
In such procedures, a large volume of a radio-opaque “dye” or contrast media is injected into the vasculature of the patient to the site of obstruction. X-ray videos are then taken of the coronary arteries using the contrast media, thus providing an image of the location and severity of the blockage in the diseased vessel.
Due to the pressure and large volume of fluid being injected into a patient during cardiological procedure and many other types of procedures (e.g. MRI, CT, etc.), specialized injection systems have been developed which enclose and retain the injecting syringes during use. These systems typically use a disposable syringe since non-disposable syringes can oftentimes be impractical and prohibitive from a cost and process standpoint. Such systems restrict and prevent bursting or leakages of the pressurized fluid during use of the injecting syringe. Due to the safety and reliability requirements of systems containing such pressurized fluids, various pressure sleeve systems have been developed for medical use. Examples of these systems can be found in U.S. Pat. Nos. 5,899,885 and 5,779,675.
In each of the above-referenced patents, there is disclosed a fluid injection system that utilizes a specialized pressure sleeve designed to accommodate the biosafety requirements for each injection system. These pressure sleeve designs are also intended to simplify the operation of the injector by enabling the user to introduce the syringe into the injection system from the front of the system. Such designs are typically referred to as “front-loading” injection systems.
Although the front-loading systems disclosed in the above-referenced patents (and other similar devices not specifically described) offer improvements over the earlier pressure sleeve designs, such systems are not always optimal. For example, one disadvantage of a front-loading pressure sleeve design as shown is that a user can accidentally attempt to remove the syringe from the system when the syringe plunger is still engaged (at the rear end of the plunger) to the actuator ram of the injection system. If the syringe is successfully removed with the plunger still attached to the actuator, any remaining injection fluid will flood the pressure sleeve assembly and likely seep onto the actuator and eventually into the injector housing. Although not creating a biohazard, this undesirable result may somewhat reduce long term performance and thus, requires disassembly of the sleeve in order to thoroughly clean the system.
Another example of a disadvantage of the front-loading system such as discussed above is the difficulty in removing the syringe and/or pressure sleeve from the system if there has been any leakage or inadvertent spilling of injection media into the pressure sleeve. This difficulty results from the injection media solidifying or accumulating on the pressure sleeve surfaces and thereby inhibiting smooth movement of the syringe into or out of the pressure sleeve, as well as movement of the pressure sleeve out of the injector. Oftentimes, the only way to remove the syringe and/or pressure sleeve under such conditions is to pry the device out by hand or with some sort of makeshift tool.
In view of the above, it is apparent that although improvements in pressure vessel sleeves have been made, there is a continuing need to provide better pressure sleeve systems that are reliable and less likely to result in fluid contamination of the pressure sleeve assembly. There is also a need to provide an injection device having a pressure sleeve system that is simpler to use and easier to maintain. Such improved fluid injection systems include properties that reduce the amount of effort required prior to and during use of the system as well as properties that increase the device's range of applications.
OBJECTS AND SUMMARY OF THE INVENTION
In view of the foregoing, it is an object of the present invention to provide a pressure sleeve assembly that addresses the limitations and disadvantages associated with prior devices, yet meets the needs of the users.
A further object of the invention is to provide a pressure sleeve assembly that is efficient, requires minimal effort by the user, is easy to assemble, disassemble and maintain.
Still another object of the invention is to provide a pressure sleeve assembly that is freely accessible. Such an assembly allows for changing syringe configurations for use in different applications.
A further object of the invention is to provide a pressure sleeve assembly having a pivotable pressure sleeve. This configuration allows for a fully exposed sleeve, which increases its accessibility and ease of cleaning. A pivotable pressure sleeve can have a permanently mounted door, thereby creating a “chamber” area for the syringe. Alternatively, the pressure sleeve can be stationary and have a removable door.
A further object of the invention is to provide an axial force management system such that a forward plate of the injector is rigidly mounted to the support and can withstand the primarily axial forces being exerted against a syringe mounted in a pressure sleeve.
A further object of the invention is to provide a pressure sleeve assembly configured so as to have a pressure transducer or sensor coupled to or located within or on the front plate thereby providing a direct and more accurate measurement of fluid pressure within the syringe.
An additional object of the invention is to provide an injection system for delivery of contrast media or other fluids. The system can include a power supply, an injector head, a console and a pressure sleeve assembly, where the pressure sleeve assembly can have a longitudinal base member having a receptacle area, a cylinder having a first opening and a second opening, a pivotal arm movable between a first position and a second position, coupling the cylinder to the longitudinal base member, where the cylinder is exposed when in the open position and resides within the receptacle area of the longitudinal base member when in the closed position, and a door positioned at the first opening of the cylinder in the closed position, where the door is fixed to the longitudinal base member.
These and other objects not specifically enumerated herein are believed to be addressed by the present invention, which contemplates a pressure sleeve assembly and its use with a fluid injection system for delivery of fluids during numerous types of medical procedures.
REFERENCES:
patent: 4677980 (1987-07-01), Reilly et al.
patent: 5515851 (1996-05-01), Goldstein
patent: 5573515 (1996-11-01), Wilson et al.
patent: 5779675 (1998-07-01), Reilly et al.
patent: 5800397 (1998-09-01), Wilson et al.
patent: 5807340 (1998-09-01), Pokras
patent: 5899855 (1999-05-01), Brown
patent: 5899885 (1999-05-01), Reilly et al.
patent: 5916165 (1999-06-01), Duchon et al.
patent: 6007515 (1999-12-01), Epstein et al.
patent: 6086569 (2000-07-01), Schweizer
patent: 6099502 (2000-08-01), Duchon et al.
patent: 6270481 (2001-08-01), Mason et al.
patent: 6344030 (2002-02-01), Duchon et al.
patent: 6387077 (2002-05-01), Klibanov et al.
patent: WO 99/21600 (1999-05-01), None
Duchon Douglas
Mujwid James Ryan
Acist Medical Systems, Inc.
Kramer Levin Naftalis & Frankel LLP
Robinson Daniel
LandOfFree
Pressure sleeve assembly does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Pressure sleeve assembly, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pressure sleeve assembly will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3257002