Valves and valve actuation – Fluid actuated or retarded – Flexible wall expansible chamber reciprocating valve actuator
Reexamination Certificate
2002-06-14
2004-02-24
Bastianelli, John (Department: 3754)
Valves and valve actuation
Fluid actuated or retarded
Flexible wall expansible chamber reciprocating valve actuator
C092S09800R, C092S135000, C137S907000, C251S030010
Reexamination Certificate
active
06695279
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to a pressure-responsive actuator, and particularly to an improvement in a pressure-responsive actuator in which the inside of a case is divided into first and second air chambers by a diaphragm having a peripheral edge clamped to the case; a coil spring is accommodated in the second air chamber for exerting a spring force for urging the diaphragm in a direction to decrease the volume of the first air chamber; and a rod is coaxially connected at one of opposite ends to a side of a retainer mounted to a central portion of the diaphragm on the side of the first air chamber and at the other end to a tip end of an arm fixed at its base end to a driven shaft rotatable about an axis perpendicular to a plane parallel to the rod.
Conventionally, such a pressure-responsive actuator is known, for example, from Japanese Patent Application Laid-open No. 11-93906.
In the structure in which the rod coaxially connected at one end to the retainer mounted at the central portion of the diaphragm is connected at the other end to the tip end of the arm fixed at its base end to the rotatable driven shaft, the rod reciprocates in a longitudinal direction, while being tiled about an axis parallel to the axis of the drive shaft. The conventionally known pressure-responsive actuator is constructed to allow tilt of the rod.
In the conventional actuator, however, when the diaphragm is flexed toward the first air chamber by the spring force of the coil spring by eliminating a difference in pressure between the first and second air chamber, the rod may be tilted until the diaphragm is pushed strongly against an inner surface of the case, whereby friction is generated between the inner surface of the case and the diaphragm by the movement of the rod in the longitudinal direction, because the tilt of the rod is permitted. If such friction is generated, the diaphragm is worn, resulting in a reduction in its durability.
SUMMARY OF THE INVENTION
Accordingly, it is an object of the present invention to provide a pressure-responsive actuator which can prevent the wear of the diaphragm to enhance the durability thereof.
To achieve the above object, according to the present invention, there is provided a pressure-responsive actuator in which the inside of a case is divided into first and second air chambers by a diaphragm having a peripheral edge clamped to the case wherein a coil spring is accommodated in the second air chamber for exerting a spring force for urging the diaphragm in a direction to decrease the volume of the first air chamber; and a rod is coaxially connected at one of opposite ends to a side of a retainer mounted to a central portion of the diaphragm on the side of the first air chamber and at the other end to a tip end of an arm fixed at its base end to a driven shaft rotatable about an axis perpendicular to a plane parallel to the rod, and wherein the case is provided with a tilt-restricting portion for restricting the tilt of the rod in the plane to a range in which the contacting of the diaphragm with the inner surface of the case can be avoided.
With this arrangement, the tilt of the rod is restricted, so that the diaphragm is prevented from being brought into contact with the inner surface of the case. Therefore, the friction cannot be generated between the inner surface of the case and the diaphragm by the movement of the rod in the longitudinal direction and hence, it is possible to prevent the wear of the diaphragm to enhance the durability thereof.
In a preferred feature, at least one of the case, the retainer and the rod is made of a synthetic resin. This arrangement makes it possible to provide a reduction in weight of the pressure-responsive actuator.
In a further preferred feature, the case and the rod are made of the same synthetic resin. This arrangement enables a reduction in weight of the pressure-responsive actuator and prevents only one of the tilt-restricting portion provided on the case and the rod from being worn due to the contact between the tilt-restricting portion and the rod.
In a further preferred feature, the rod is integrally connected at one end to the retainer. This arrangement can reduce the number of parts.
In a further preferred feature, the case is mounted to an intake manifold which is constructed so that the length of an intake passageway can be varied in response to the turning of a switching valve which is turnable along with the driven shaft. With this arrangement, the switching valve included in the intake manifold can be driven for switching by the pressure-responsive actuator having a simple structure and an enhanced durability.
In a further preferred feature, the intake manifold is made of a synthetic resin. With this arrangement, a load acting on the pressure-responsive actuator for actuating the switching valve, increases due to an error in shape of the intake manifold which is likely to be caused by the intake manifold being made of the synthetic resin, whereby the rod is tend to be tilted more easily. Because the tilt of the rod is restricted as described above, however, the pressure-responsive actuator can be used more effectively.
In a further preferred feature, the switching valve is made of a synthetic resin. With this arrangement, a load acting on the pressure-responsive actuator for actuating the switching valve, increases due to an error in shape of the switching valve which is likely to be caused by the switching valve being made of the synthetic resin, whereby the rod is tend to be tilted more easily. Because the tilt of the rod is restricted as described above, however, the pressure-responsive actuator can be used more effectively.
In a further preferred feature, the switching valve is constructed into a rotary type. With this arrangement, the resistance to the sliding of the switching valve is large because of the rotary type, and the load acting on the pressure-responsive actuator increases, whereby the rod is tend to be tilted more easily. Because the tilt of the rod is restricted as described above, however, the pressure-responsive actuator can be used more effectively.
In a further preferred feature, for rotatable connection between the arm and the rod made of a synthetic resin, the arm has a pillow ball provided thereon; the rod is provided at the other end thereof with a fitting bore having at its intermediate portion an annular recess for supporting the pillow ball, and the rod has a plurality of notches provided therein to be open at least in a side of the fitting bore to which the pillow ball is fitted, the notches leading to the fitting bore at a plurality of circumferential points in the fitting bore. With this arrangement, when the pillow ball is fitted into the fitting bore, while temporarily deforming a portion of the rod, a stress acting on the rod around the fitting bore is alleviated by the presence of the plurality of notches, and the need for a special treatment such as a rod-warming treatment can be eliminated. As a result, the number of assembling steps for rotatably connecting the arm and the rod to each other can be reduced, so that the assembling operation is facilitated.
In a further preferred feature, first notch, second and third notches are provided in the other end of the rod to extend radially from the fitting bore, the first notch extending in a longitudinal direction of the rod, the second and third notches being disposed at locations where they are spaced at the same distance apart from the first notch, and the second and third notches being defined to have a length shorter than that of the first notch. With this arrangement, the first notch can be defined to have a sufficiently large length, and a sufficient number of notches can be provided in the rod, while avoiding an enlargement in end size of the rod. In addition, the stress acting on the rod around the fitting bore can be alleviated sufficiently.
In a further preferred feature, a cover portion is integrally provided on a portion of the case and fastened to the intake manifold so as to cove
Kudo Kenji
Takahashi Kenji
Bastianelli John
Keihin Corporation
Rankin, Hill Porter & Clark LLP
LandOfFree
Pressure-responsive actuator does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Pressure-responsive actuator, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pressure-responsive actuator will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3309512