Pressure plate subassembly

192 clutches and power-stop control – Clutches – Axially engaging

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C192S070190, C192S070270, C192S089230, C029S436000, C029S439000

Reexamination Certificate

active

06409002

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a pressure plate subassembly for a multidisk friction clutch including a housing which is connectable or connected to an abutment arrangement for joint rotation about an axis of rotation, a pressure plate arranged in the housing so that the pressure plate is rotatable together with the housing and axially displaceable relative to the housing relative to the axis of rotation, and a force accumulator for generating a pressure force, the force accumulator being supported or supportable on the housing and on the pressure plate.
2. Description of the Related Art
German reference DE 195 45 972 A1 discloses a multidisk friction clutch in which a plurality of clutch disks are designed in the form of lamellae connected to a common hub part. A pressure plate capable of being loaded by a force accumulator is provided in the clutch housing. Furthermore, a plurality of intermediate disks are connected fixedly in terms of rotation to the clutch housing, these intermediate disks in each case engaging between two lamellae of the clutch disks. The intermediate disks and the lamellae are capable of being pressed against one another by the force accumulator to generate mutual frictional bearing contact. The force accumulator is designed in the form of a diaphragm spring and lies within the housing essentially parallel to a housing bottom such that the diaphragm spring may be supported on the housing and on the pressure plate to generates the necessary pressure force on the pressure plate to effect the frictional bearing contact.
In friction clutches of this type, there is a problem that the supply of cooling air into the interior of the clutch is limited, with the result that overheating of the clutch may occur, at least when the clutch is operated for a relatively long time with slip.
Furthermore, in this known friction clutch, there is the problem that sufficient construction space for the pivoting movement of the force accumulator must be provided in the housing itself to allow the greatest possible lift-off travel.
SUMMARY OF THE INVENTION
The object of the present invention is to provide a pressure plate subassembly for a friction clutch including an improved supply of cooling air to the components of the friction clutch which are heated during operation and a reduction in the overall available construction space.
According to an embodiment of the present invention, the object is achieved by a pressure plate subassembly for a multidisk friction clutch comprising a housing which is connectable or connected to an abutment arrangement for joint rotation about an axis of rotation, a pressure plate operatively arranged in the housing for rotation with the housing about the axis of rotation and for axial displacement relative to the housing in the direction of the axis of rotation, and a force accumulator for generating a pressure force arranged so that it is supported or supportable on the housing and on the pressure plate.
In the clutch according to the present invention, the force accumulator is arranged outside the housing.
The measure of arranging the force accumulator outside the housing of the pressure plate subassembly markedly reduces the overall size of the clutch which is determined essentially by the size of the housing. The maximum lift-off travel of the pressure plate may be defined by stops formed in the housing itself. When the pressure plate butts against these stops, the force accumulator may be further loaded without an enormous increase in force such as, for example, by pedal actuation. Accordingly, the construction space allowing for this further loading of the force accumulator does not have to be provided within the housing. Moreover, arranging the force accumulator outside the housing affords the possibility in a simple way of guiding cooling air, without it being impeded by the force accumulator, through the housing to the pressure plate and to other components arranged in the housing.
The force accumulator may, for example, be arranged on a side of the housing which faces away from the pressure plate.
To simplify the interaction between the force accumulator and the pressure plate, the pressure plate comprises at least one force accumulator support region which passes through an orifice in the housing and on which the force accumulator can act.
It is noted here, that the statement that the force accumulator is supported on the housing and on the pressure plate in corresponding regions does not necessarily mean the direct physical contact of the force accumulator with these components. Rather, support may be effected either directly, that is to say without any components being interposed, or indirectly, that is to say by the inclusion of the force transmission function of various components in the force transmission from the force accumulator to the pressure plate and/or from the force accumulator to the housing.
If the at least one force accumulator support region includes a surface region running obliquely and/or in a contoured manner relative to a radial direction and a circumferential direction, then care is taken to ensure that, in the rotational mode, air is conveyed into the inner regions by this obliquely running surface resembling a turbine blade and then contributes, for example, to cooling the pressure plate.
To reinforce this conveying effect and to ensure that the pressure plate is loaded as uniformly as possible, a plurality of force accumulator support regions succeeding one another in the circumferential direction are arranged on the pressure plate.
When the pressure plate subassembly according to the present invention is used in a friction clutch with a clutch disk provided with friction linings, the friction linings may become abraded during slippage. The abrasion, i.e., wear of the friction linings, causes the pressure plate and the force accumulator become displaced. To avoid changes in the operating characteristics, in particular the force characteristic of the force accumulator, which are induced by displacements of this nature, it is possible to provide a wear-compensation arrangement to automatically compensate for wear which occurs during operation.
The wear-compensation arrangement may comprise a wear-adjustment device arranged in the support path between the force accumulator and the pressure plate and/or in the support path between the force accumulator and the housing. The wear-adjustment device includes at least one wear-adjustment element which can be displaced to compensate for wear. Furthermore, the wear-adjustment device also includes at least one blocking/detection element with a blocking section that is preloaded against the wear-adjustment device and acts on this device to prevent movement of the at least one wear-adjustment element and a detection section which interacts with or is made to interact with a component whose position can be affected in the event of wear to detect the level of wear. In response to wear, the at least one blocking/detection element is moved counter to its preloading into a position in which the at least one wear-adjustment element is released.
To ensure that the automatic wear compensation occurs during the next clutch release operation, a locking element is arranged for locking the blocking/detection element against movement in its preloading direction once the at least one blocking/detection element has been moved into this position. For this purpose, the at least one locking element may comprise a locking slide element, preferably a locking wedge element, which is preloaded to move in a locking direction.
In the pressure plate subassembly according to the present invention, the wear-adjustment device may be arranged between the force accumulator and the at least one support region. The at least one locking element may then also be supported on at least one support region.
To obtain rotational coupling between the pressure plate and the housing, the pressure plate may comprise at least one rotational coupling projection

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Pressure plate subassembly does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Pressure plate subassembly, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pressure plate subassembly will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2936671

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.