Pressure plate assembly for a friction clutch

192 clutches and power-stop control – Elements – Thrust members – retarders – and stops

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C192S070251, C192S111400

Reexamination Certificate

active

06702087

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention pertains to a pressure plate assembly for a friction clutch, comprising a housing arrangement; a pressure plate held in the housing arrangement with freedom to move in the direction in which a rotational axis extends; a stored-energy element; a wear-compensating device acting in the path of force transmission between the stored-energy element and the pressure plate and/or the housing arrangement, which device has at least one adjusting element which can move in an adjusting direction to compensate for wear; and a clearance-producing arrangement, comprising at least one gripping element, which is attached to the assembly upon which the stored-energy element acts via the wear-compensating device. The minimum of one gripping element has a blocking section, by means of which it can make blocking contact with a blocking element when wear occurs, the clearance-producing arrangement also comprising an arresting element associated with the minimum of one gripping element. The arresting element can be displaced in the direction of the arresting motion upon the deflection, produced by the blocking system, of the minimum of one gripping element with respect to the assembly in question in order to arrest the gripping element in the deflected position associated with the amount of wear which has occurred.
2. Description of the Related Art
A pressure plate assembly with a design of this type is known from U.S. Pat. No. 6,123,180. Pressure plates of this type are usually manufactured by suppliers, who do not necessarily also produce the flywheels or clutch disks to be assembled with these pressure plates to arrive at a complete friction clutch. This means that these pressure plate assemblies are frequently delivered separately and are not attached to the clutch disks and flywheels to produce the complete friction clutches until they have arrived in the automotive assembly plant or some later production stage. This means that, in the stage before the pressure plate assembly is attached to the flywheel, there is initially no backing for the pressure plate. The stored-energy element, which is acting on the pressure plate, thus pushes the pressure plate outward from the housing arrangement; that is, there is no support such as that present after the flywheel and the clutch disk, which is situated between the pressure plate and the flywheel, have been attached. The flywheel and the clutch disk thus form a stop, which limits the movement of the pressure plate. A problem which exists in this type of production phase, i.e., the phase before the pressure plate has been attached to the flywheel, is that, as a result of the force exerted by the stored-energy element, the pressure plate can be pushed so far out of the housing arrangement that the gripping element (or the blocking section of the gripping element) enters into contact interaction with a blocking element, which can be attached, for example, to the housing arrangement. As a result, the subassemblies provided in the pressure plate assembly to respond to and to compensate for wear either go into operation or are brought into a state of readiness for such operation. This, however would ultimately mean that an unwanted wear-compensating operation would occur later, when the clutch disk is pushed back into the housing arrangement as it being attached to the flywheel and the clutch disk. The first result of this is that the friction clutch would be installed in the wrong position, and the second is that the installation position of the stored-energy element would be changed, leading to a corresponding change in its force characteristic.
SUMMARY OF THE INVENTION
The present invention has the object of improving the design of a pressure plate assembly of the general type in question so that, in the state before the pressure plate assembly is attached to additional components of a friction clutch, unwanted wear adjustments or measures preparatory to such adjustment do not occur.
In the pressure plate assembly according to the invention, a transport-securing arrangement is also provided, by means of which, before the pressure plate assembly is attached to the centrifugal mass arrangement, the minimum of one arresting element can be prevented from moving in the arresting direction and/or the minimum of one adjusting element can be prevented from moving in the adjusting direction.
By providing a transport-securing arrangement, which is effective especially in those areas of the pressure plate assembly which are critical with respect to unwanted wear adjustments, it is possible in a reliable manner to prevent the occurrence of a compensating movement when, in the transport condition, the pressure plate moves past its normal installation point in the friction clutch under the force of the stored-energy element and then is pushed back again into the housing arrangement during the assembly process. By providing a transport-securing device, it is possible, for example, to avoid the necessity of having to wait to install the blocking element provided to interact with the gripping element or the necessity of having to wait to bring the blocking element into its final installation position until after the friction clutch has been assembled. The means that some of the work steps involved in the process of assembling a friction clutch can be eliminated.
For example, a transport-securing section cooperating with the minimum of one adjusting element can be provided on the arresting element. This can be realized, for example, by providing the arresting element with an arresting interaction area, which, upon the occurrence of wear and the completion of a wear-compensating operation, allows limited relative movement between the minimum of one adjusting element and the arresting element, and by designing the transport-securing section on the arresting element in such a way that, in the transport state, it allows essentially no relative motion between the minimum of one adjusting element and the arresting element.
To allow the defined adjusting movement of the minimum of one adjusting element during the normal operating condition of a friction clutch but at the same time to be able to secure the assembly suitably for transport, it is proposed that, in the operating state of the clutch, the arresting interaction area engage in a recess in the adjusting element, which recess is elongated in the adjusting direction and is longer in the adjusting direction than the arresting interaction area, and that the arresting element have, in the area of the transport-securing section, a length in the adjusting direction which is essentially the same as the length of the recess. It can also be provided in the pressure plate assembly according to the invention that the arresting interaction area extends essentially in the radial direction into the recess and that the transport-securing section adjoins the arresting interaction area in the radial direction.
The transport-securing device will basically continue to perform its function during the process of attaching the pressure plate assembly to the flywheel or the like. To render this device inoperable so that the desired wear compensation function can be carried out during the normal operation of the clutch, it is proposed that the transport-securing device be brought out of its transport-securing interaction with the recess by the action of centrifugal force. This makes it possible to eliminate a separate set of work procedures for deactivating the transport-securing device.
Especially in an embodiment in which the transport-securing device acts essentially in the area of interaction between the arresting element and the minimum of one adjusting element, it is preferable to provide a release force-producing device, which acts on the pressure plate in the direction opposite that in which the stored-energy element exerts its force, the releasing force produced by the release force-producing device preventing the minimum of one adjusting element from moving by

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Pressure plate assembly for a friction clutch does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Pressure plate assembly for a friction clutch, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pressure plate assembly for a friction clutch will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3235559

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.