Pressure-assisted liquid delivery system

Dispensing – Collapsible wall-type container – With wall-collapsing means

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C222S105000

Reexamination Certificate

active

06454132

ABSTRACT:

BACKGROUND OF THE INVENTION
Hydration systems for sports enthusiasts, workers, and others engaged in a high level of physical activity typically consist of a textile backpack or waist pack (or other pack-type designs) containing a flexible reservoir bag with a hose or outlet having a demand valve at its end. The reservoir contains a liquid for drinking which is accessed via the valve. Most valves require applying suction while simultaneously performing a bite or squeeze action of some sort with the teeth, tongue, or lips, which opens of the valve and allows the liquid to be drawn out through the hose. There are many valve designs on the market having distinct activating requirements.
When the pack is mounted on the user's back, the liquid is drawn from the reservoir up through a length of hose requiring moderate but notable suction. When the pack is waist-mounted, greater suction is required to raise the liquid to mouth level. The suction required by existing art hydration pacts is comparable to that needed to drink from a 24″ to 30″ vertical drinking straw. The dual requirements of creating suction and of valve manipulation while engaged in high levels of activity such as running or cycling is inefficient and cumbersome, and interferes with the user's breathing, concentration, and performance. Accordingly, there is a need for an improved liquid delivery system providing a more efficient delivery of liquid to individuals engaged in vigorous physical activity.
SUMMARY OF THE INVENTION
Applicant's pressure-assisted liquid delivery system described herein constitutes a radical improvement over the prior art. A reservoir for containing liquid is typically a seam-welded leak-proof bag made of flexible plastic materials which can withstand external pressure and compression. The reservoir has an exit port to which a length of hose is connected, and a fill port, or opening, which can be sealed shut by various means once the reservoir has been filled. In applicant's invention, once the reservoir has been filled and closed, a compressive force is applied to the reservoir by one of several means described below. The compressive force is such that the liquid contents of the reservoir are maintained under constant pressure, driving the pressurized liquid to flow through the hose to the valve. The valve system is operable under such pressure without leaking or dripping. Thus, once the user activates the valve, the compressive force in the reservoir causes the liquid to flow actively and rapidly into the mouth. No hydration system in the prior art provides such instant delivery of liquid on demand to the athlete or other physically active user.
Prior art hydration systems employ the conventional suction method requiring the user/athlete to interrupt breathing for long intervals in order to create suction, draw liquid up into the mouth, and swallow; draw and swallow, draw and swallow, gulp by gulp. Using applicant's pressure-assisted system, the drinking interval is completed substantially faster, typically in ¼ to ⅓ the time as compared to prior art hydration systems, because when the valve is activated, the pressurized liquid jets directly and immediately into the mouth leaving breathing rhythms uninterrupted, and preventing breathlessness.
It is commonplace in human beings to drink only once we are thirsty. By the time the “thirsty” sensation is detected and the person takes action, the body's hydration level may have fallen considerably below the optimum for best performance, especially during exertion. The pressure-assisted delivery system assists the user/athlete with drinking a larger quantity of liquid in a given period of time than would be possible using the prior art suction method, resulting in achievement of a greater, performance-enhancing hydrating effect at an earlier stage in the event or activity.


REFERENCES:
patent: 3960294 (1976-06-01), Bernard
patent: 4284209 (1981-08-01), Barbour, Jr.
patent: 4848594 (1989-07-01), Bjorkengren et al.
patent: 5342313 (1994-08-01), Campbell et al.
patent: 5857592 (1999-01-01), Hyldgaard et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Pressure-assisted liquid delivery system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Pressure-assisted liquid delivery system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pressure-assisted liquid delivery system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2892026

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.