Pressure applying garment

Apparel – Guard or protector – Body cover

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C002S002140, C002S905000, C002SDIG003, C600S020000, C600S388000

Reexamination Certificate

active

06757916

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a garment, more particularly to a garment for applying pressure to a wearer and/or for positioning and applying pressure to transmitters (e.g. tactors or bio-feedback sensors) to press them against the wearer of the garment while accommodating body movement under positive or negative G (gravity pressure).
BACKGROUND OF THE PRESENT INVENTION
Loss of situation awareness (SA) and spatial disorientation (SD) are situations encountered for example by aviators and have been blamed for a significant number of aviation mishaps. SD can occur for example when there are missing or conflicting visual cues (e.g. in fog or white-out conditions) or when flight maneuvers greater than 1-G produce a false perception of rotation to the aviator.
The Tactile Situation Awareness System (TSAS), developed by the US Naval Aerospace Medical Research Laboratory (NAMRL) presents 3 dimensional orientation information to pilots and aircrew by taking advantage of an intuitive response produced upon stimulation of skin tactile receptors. TSAS uses for example, electromechanical or pneumatic transmitters generally known as tactors to provide tactile stimuli to the receptors (skin). The tactors produce small, rapid displacements of the skin, typically perpendicular to the skin surface of enough magnitude to excite the receptors. For example, tactile stimuli applied to the pilot's chest in a fixed-wing aircraft indicate that the nose is going down. In a helicopter, tactile stimuli on the pilot's right side or back indicate that the aircraft is sliding in those directions, helping the pilot to maintain a stationary hover without reference to the ground or instruments.
To maximize the transduction of the tactile stimuli to the skin receptors, the tactors are normally mounted to provide direct contact between the tactor and the skin of the wearer.
This pressure garment's primary function is as a tactor locator system (TLS) to maintain tactor position and press the tactor against the skin by providing a counter pressure of sufficient magnitude to ensure transmission of the stimuli. Furthermore, the counter pressure should remain relatively constant to maintain repeatable tactile stimuli. The pressure that can be provided by a close-fitting garment is largely dependent on the local geometry of the body surface. Obtaining sufficient counterforce against the skin is a challenge particularly over concave body sites such as along the sternum between the pectoral muscles and in the lumbar region, which are among the ideal locations for tactor placement.
An inflatable cooling vest (Frim, J. and Michas, R. D. E, U.S. Pat. No. 5,243,706, issued Sep. 14, 1993; Frim, J. and Michas, R. D. E, CA Patent 2051358, issued Mar. 18, 1997) over the upper torso has successfully functioned as a TLS during rotary wing flight testing (Raj, A. K., Suri, N., Braithwaite, M. G., Rupert, A. (1999) The tactile situation awareness system in rotary wing aircraft: Flight test results. RTO HFM Symposium on “Current Aeromedical Issues in Rotary Wing Operations”, RTO MP-19. 16-1 to 16-7) however skin contact was minimal and thus the success was limited.
NAMRL has proposed the use of 8 horizontally spaced (along the height of the user) rows of 12 circumferentially spaced (around the body of the user) tactors. The choice of 12 around the circumference of the garment is based on the hour hand of a clock, which has historically been used to describe location/direction. However, the array is not restricted to this configuration but will depend upon the specific needs of the environment in which TSAS is used.
A TLS providing a minimum of 15 grams (g), of tactor counterforce measured at 1 G (gravitational pressure) with an electromechanical tactor-sized load cell i.e. about 3.0 cm diameter and 7.7 mm thickness was deemed “acceptable” by NAMRL for intensity of the TSAS signal. Rotary-wing flight-testing of this system demonstrated that the information transmitted to the pilot via TSAS is easily interpreted with minimal training (Raj et al., 1999). In these devices the sensations transmitted to the user via the tactors are computer activated by sending the signals to and from the tactors to a suitable computer.
Counter pressure garments have been used for years to protect blood circulation either during shock (McCabe, F. J., U.S. Pat. No. 5,146,932, issued Sep. 15, 1992) or during exposure to increased gravity by aircrew (Clarke, D. M., CA Patent 672429, issued Oct. 15, 1963). Anti-gravity pressure suits (G protection suits) are worn to counter the effect of blood pooling in the lower limbs during unusual aircraft accelerations. Reddemann, H. et al. (U.S. Pat. No. 5,027,437, issued Jul. 2, 1991) combines G protection with active cooling whereas Bassick, J. W. and Dubois, E. A. (U.S. Pat. No. 5,003,630, issued Apr. 2, 1991) combines G protection with passive cooling via evaporation of sweat through vapour permeable bladders. Pressure garments have also been used to treat various medical conditions such as in the treatment of lymphedema (Kloecker, R. J., U.S. Patent Application 2002/0042585 A1, published Apr. 11, 2002) and to reduce scarring in burn patients (Cheng, J. D., Evans, J. H., Leung, K. S. Clark, J. A., Choy, T. T., Leung, P. C. (1984) Pressure therapy in the treatment of post-bum hypertrophic scar—A critical look into its usefulness and fallacies by pressure monitoring. Burns 10, 154-163.). However, there is no known counter pressure garment that conforms to the varied surface geometry of the body. Close fitting garments made of stretchable material such as that sold under the Trademark “Lycra” will contact the skin around the circumference of the body but will not have contact over the areas of concave curvature such as along the chest sternum, upper and lower spine.
At 1 G (i.e. normal G) It has been found that a person can sense the skin displacement resulting from a counterforce on the tactor of 15 g. As G increases, a greater counter force is needed to hold the tactor against the skin such that the skin tactile receptors are sufficiently stimulated for the pilot to sense the signal.
The Lycra garments (pressure applying garments used to treat various medical conditions) tested by Cheng et al. (1984) had no pressure in the areas of concave curvature between the shoulder blades and lower back. To address this problem, they filled the body surface crevices under the garments with foam and similar materials to build up the contour and thus obtain pressure against the skin.
While the addition of foam in these pressure garments for treating medical conditions received limited success, this solution (addition of foam) is not satisfactory for use in a TLS garment as it adds insulation and contributes to heat stress in the cockpit. Also with repeated wear, the foam generally becomes less effective in applying pressure against the skin due to compression set.
The use of such stretchable garments is not satisfactory because after only a few hours of wear, stretch garments tend to lose elasticity making them less effective in applying pressure against the skin. Cheng et al. (1984) observed that the Lycra pressure garments they tested lost fabric elasticity and tension, reducing pressure against the skin after a 12 hour period.
Integrating sensors etc. into the garment and using the garment to hold them against the skin, is not a new concept. The ‘SmartShirt’ is an example (see http://www.time.com/time/2001/inventions/health/insensor.html) however; such a garment cannot for example provide sensor/tactor contact in the concave areas of curvature of the body. Furthermore obtaining a sufficient counter pressure against the tactors/sensors in a high gravity (G) environment (i.e. during aircraft acceleration) is a limitation that the SmartShirt concept is unlikely to overcome.
BRIEF DESCRIPTION OF THE PRESENT INVENTION
It is an object of the present invention to provide a garment for mounting tactors in strategic locations relative to the body of the user and for applying the desired amount

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Pressure applying garment does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Pressure applying garment, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pressure applying garment will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3219883

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.