Preserving a hemoglobin blood substitute with a transparent...

Chemistry: natural resins or derivatives; peptides or proteins; – Proteins – i.e. – more than 100 amino acid residues – Blood proteins or globulins – e.g. – proteoglycans – platelet...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S006900, C604S403000, C604S408000

Reexamination Certificate

active

06610832

ABSTRACT:

BACKGROUND OF THE INVENTION
There exists a need for a blood-substitute to treat or prevent hypoxia resulting from blood loss (e.g, from acute hemorrhage or during surgical operations), resulting from anemia (e.g., pernicious anemia or sickle cell anemia), or resulting from shock (e.g, volume deficiency shock, anaphylactic shock, septic shock or allergic shock). The use of blood and blood fractions as in these capacities as a blood-substitute is fraught with disadvantages. For example, the use of whole blood often is accompanied by the risk of transmission of hepatitis-producing viruses and AIDS-producing viruses which can complicate patient recovery or result in patient fatalities. Additionally, the use of whole blood requires blood-typing and cross-matching to avoid immunohematological problems and interdonor incompatibility.
Human hemoglobin, as a blood-substitute, possesses osmotic activity and the ability to transport and transfer oxygen, but it has the disadvantage of rapid elimination from circulation by the renal route and through vascular walls, resulting in a very short, and therefore, a typically unsatisfactory half-life. Further, human hemoglobin is also frequently contaminated with toxic levels of endotoxins, bacteria and/or viruses.
Non-human hemoglobin suffers from the same deficiencies as human hemoglobin. In addition, hemoglobin from non-human sources is also typically contaminated with proteins, such as antibodies, which could cause an immune system response in the recipient.
Previously, at least four other types of blood-substitutes have been utilized, including perfluorochemicals, synthesized hemoglobin analogues, liposome-encapsulated hemoglobin, and chemically-modified hemoglobin. However, many of these blood-substitutes have typically had short intravascular retention times, being removed by the circulatory system as foreign substances or lodging in the liver, spleen, and other tissues. Also, many of these blood-substitutes have been biologically incompatible with living systems.
Thus, in spite of the recent advances in the preparation of hemoglobin-based blood-substitutes, the need has continued to exist for a blood-substitute which has levels of contaminants, such as endotoxins, bacteria, viruses, phospholipids and non-hemoglobin proteins, which are sufficiently low to generally prevent an immune system response and any toxicological effects resulting from an infusion of the blood-substitute. In addition, the blood-substitute must also be capable of transporting and transferring adequate amounts of oxygen to tissues under ambient conditions and must have a good intravascular retention time.
Further, it is preferred that the blood-substitute 1) has an oncotic activity generally equivalent to that of whole blood, 2) can be transfused to most recipients without cross-matching or sensitivity testing, and 3) can be stored with minimum amounts of refrigeration for long periods.
The blood-substitute is typically packaged in a metal foil laminate overwrap having high O
2
and moisture barrier properties. The metal foil laminates are typically
The blood-substitute is typically packaged in a metal foil laminate overwrap having high O
2
and moisture barrier properties. The metal foil laminates are typically opaque, thus not allowing visual inspection of the product nor the inspection of the integrity of the primary package. Furthermore, an opaque overwrap requires the use of a second label on the outside of the overwrap.
In the past, clear silicon containing laminates with high oxygen and moisture barrier properties have not been useful in automated packaging equipment because the stress on the material caused it to crack or otherwise lose barrier properties.
SUMMARY OF THE INVENTION
The present invention is drawn to a method for preserving a deoxygenated hemoglobin blood substitute. The method comprises maintaining the deoxygenated hemoglobin blood substitute in an oxygen barrier film overwrap comprising a transparent laminate material, said oxygen barrier film overwrap having an oxygen permeability of less than about 0.01 cubic centimeters per 100 square inches over 24 hours at one atmosphere and at room temperature. Room temperature is defined herein as 23° C.
The present invention also is drawn generally to a preserved deoxygenated hemoglobin blood substitute. The preserved blood substitute of the present invention comprises a deoxygenated hemoglobin blood substitute and an oxygen barrier film overwrap package. The oxygen barrier film overwrap of the preserved deoxygenated hemoglobin blood substitute comprises a transparent laminate material having an oxygen permeability of less than about 0.01 cubic centimeters per 100 square inches over 24 hours at one atmosphere and at room temperature. The deoxygenated hemoglobin blood substitute is sealed within said oxygen barrier film overwrap, thereby preserving the deoxygenated hemoglobin blood substitute in an environment that is substantially free of oxygen.
In one embodiment of the present invention, the clear overwrap film is used in combination with foil films in automated packaging. In one embodiment, a automated packaging machine manufactured by Tiromat (Avon, Mass.) has been used.
The advantages of this invention are numerous. One advantage is that the hemoglobin stored according to the methods of this invention has a greater degree of purity and longer shelf-life. High barrier overwraps provide an addition level of product quality even when high barrier primary packaging is employed. In addition, the transparent high barrier overwraps of the present invention provide extremely high oxygen and water vapor barrier properties but have no saran (polyvinylidene chloride, PVDC) layer. PVDC poses a medical waste problem because chlorinated products such as polycyclic aromatic hydrocarbons and hydrochloric acid are generated during incineration. Clear overwraps allow the label of the primary package to be seen. Therefore, a second label is typically not required on the overwrap. In addition, product quality inspection and primary package integrity can also be evaluated. Furthermore, as demonstrated for the first time herein, automation equipment can be used with the clear oxygen barrier laminates, allowing production of very large numbers of packages in a short period of time with very little human labor and without the loss of barrier properties. The blood-substitute remains stable at room temperature for periods of two years or more, a significant improvement over previous methods.
DETAILED DESCRIPTION OF THE INVENTION
The features and other details of the process of the invention will now be more particularly described and pointed out in the claims. It will be understood that the particular embodiments of the invention are shown by way of illustration and not as limitations of the invention. The principle features of this invention can be employed in various embodiments without departing from the scope of the present invention.
The invention relates to a method for preserving the stability of a hemoglobin blood substitute comprising maintaining the hemoglobin blood substitute in an atmosphere substantially free of oxygen. This method can be accomplished by maintaining the blood substitute in an oxygen-impermeable container, such as an oxygen barrier primary package, an oxygen barrier film overwrap (e.g., a bag), glass container (e.g., a vial) or a steel container. Where the primary package is an oxygen barrier film, the container can be manufactured from a variety of materials, including polymer films, (e.g., an essentially oxygen-impermeable polyester, ethylene vinyl alcohol (EVOH), or nylon), and laminates thereof. Where the container is an oxygen barrier overwrap, the container can be manufactured from a variety of materials, including polymer films, (e.g., an essentially oxygen-impermeable polyester, ethylene vinyl alcohol (EVOH), or nylon) and laminates, such as a transparent laminate (e.g. a silicon oxide or EVOH containing-laminate) or a metal foil laminate (e.g., a silver or aluminum foil laminate).
Wher

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Preserving a hemoglobin blood substitute with a transparent... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Preserving a hemoglobin blood substitute with a transparent..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Preserving a hemoglobin blood substitute with a transparent... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3081073

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.