Preparing and regenerating a composite polymer and...

Liquid purification or separation – Filter – Material

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C210S500370, C210S500380, C210S636000, C210S638000, C210S651000, C264S045100, C264S048000, C427S244000

Reexamination Certificate

active

06544418

ABSTRACT:

TECHNICAL FIELD
The present invention relates generally to a chemically activated high capacity, microfiltration, composite polymer and silica-based membrane sorbent.
BACKGROUND OF THE INVENTION
Various sorbents/ion exchange materials are available for metal
itrate ion sequestration. Unfortunately, however, all of these suffer from the disadvantage that they possess at most two or three functional groups capable of ion interaction per attachment site. Additionally, these conventional materials are in bead (porous) form and thus, are not suited for effective utilization in convective flow applications.
As a specific example of this, ion-exchange resins (IERs), such as strong acid or weak acid cationic exchangers, have been used extensively to recover heavy metals and/or to prepare high quality water. The typical theoretical capacity of these IERs is five meq/gram (see “Ion-Exchange Resins and Related Polymeric Adsorbents”, Technical Bulletin AL-142, Aldrich Chemical Company). This capacity is quite low. For example, if one considers a typical charged metal ion such as nickel (II) a maximum uptake of only 0.15 gram of metal per gram of IER is possible. Further, the requirement for the regeneration of these IERs is a serious disadvantage as it produces concentrated waste solutions. Still further, the use of ion exchange beads requires column operations with high pressure drops and the rate of metal ion uptake is thereby limited by diffusion control.
Of course, there are many industrial situations where it is required to convert metal ions from the solution state to a solid form. This is done in order to facilitate the disposal of such metal species. In still other situations subsequent regeneration is not a consideration and/or a liquid volume reduction and entrapment of low levels of radioactive ions in a solid form is required. In these instances and applications, IERs have a significant cost disadvantage.
It is known, however, that liquid volume reduction and metal ion entrapment may be achieved using inexpensive, commercially available, high molecular weight cut-off ultrafiltration or microfiltration membranes in which internal surface areas range from 50-200 m
2
/gm. The most inexpensive materials used to prepare such membranes are cellulose and its derivatives, cellulose acetate and cellulose triacetate. Examples of such membranes are disclosed, for example, in U.S. Pat. Nos. 4,824,870 and 4,961,852 both to Pemawansa et al.
Both flat sheet and wide bore hollow fiber (200-300 &mgr;m in diameter) configurations are readily available commercially. However, direct use of these membranes for adsorption of a metal ion such as nickel (II) assuming the size of 6 Å for the hydrated metal ion species and an internal surface of 100 m
2
/gm of membrane, yields a maximum surface entrapment capacity of 0.034 grams of nickel per gram of membrane. This, of course, is too low for efficient liquid volume reduction. In fact, where only single complexation sites are available, one will require a relatively high surface area of membrane (approximately 3000 m
2
/gm) in order to achieve a 1 gram of nickel uptake per gram of membrane.
In U.S. Pat. No. 4,604,204 to Linder et al., a cellulose acetate containing membrane having pore sizes of preferably 10-500 angstroms is treated with reagents such as di-aldehydes and diisocyanates that react with the hydroxyl groups of the membrane. The reagents function as linker molecules for the attachment of a polyfunctional oligomer or polymer. These membranes are made to exclude metal ions from pores rather than to entrap metals inside the pores.
While effective in excluding metal ions, this approach has several shortcomings. First, it should be appreciated that the linker molecules fill some space and tend to interfere with and close the relatively small diameter pores to subsequent reaction. Second, it should be appreciated that many times both functional groups of the linker molecules react with hydroxyl groups of the membrane leaving none available to subsequently react with the polyfunctional oligomer or polymer. Thus, the number of available sites for polyfunctional oligomer or polymer attachment is, in fact, quite limited thereby limiting the effectiveness of the modified membrane.
Still further, any cellulose based membrane suffers from an unacceptable degree of acid and/or solvent instability which limits or prevents its use in many applications. Thus, no form of chemical modification makes their use acceptable in these environs.
A need is therefore identified for an improved chemically activated microfiltration membrane that may be utilized for heavy metal ion sequestration and other purposes (e.g. nitrate ion sequestration) and that is characterized by a relatively high entrapment capacity heretofore unavailable in the art.
SUMMARY OF THE INVENTION
Accordingly, it is a primary object of the present invention to provide a chemically activated microfiltration membrane characterized by significantly enhanced surface entrapment capacity that is relatively easy to produce.
Another object of the present invention is to provide a chemically activated microfiltration membrane wherein polyamino acids are chemically attached to the membrane including within the pores in order to provide a relatively large number (e.g. 20-1000) of functional groups capable of ion entrapment per membrane attachment site.
Still another aspect of the present invention is to provide a unique and novel method for the preparation of high capacity chemically activated, microfiltration, composite polymer and silica-based membranes formed by means of the attachment of polyamino acids along the inside pore surfaces of the membranes.
Additional objects, advantages and other novel features of the invention will be set forth in part in the description that follows and in part will become apparent to those skilled in the art upon examination of the following or may be learned with the practice of the invention. The objects and advantages of the invention may be realized and obtained by means of the instrumentalities and combinations particularly pointed out in the appended claims.
To achieve the foregoing and other objects, and in accordance with the purposes of the present invention as described herein, an apparatus is provided for ion entrapment. The apparatus comprises a chemically activated microfiltration membrane constructed from a composite polymer and silica-based material. Such a silica-based membrane provides good stability in acids and solvents. Further, such a membrane is mechanically strong and resistant to both shrinking and swelling: problems which adversely effect organic resins such as sepharose and agarose.
The chemically activated microfiltration membrane includes a polyamino acid (e.g. polyglutamic acid, polyaspartic acid, polylysine, polyarginine, polycysteine and mixtures thereof) attached thereto. This attachment is by reaction of the terminal amine group of the polyamino acid with the membrane and, more specifically, an epoxide group on the membrane.
Specifically, the chemically activated, silica-based, microfiltration membrane is prepared by first removing any coating of oil on the membrane. This is followed by permeating the membrane with a solution of silane and a solvent so as to react methoxy groups of the silane with silanol groups of the membrane and thereby incorporate epoxide groups. Next is the removing of any residual silane. This is then followed by attaching a polyamino acid to the membrane by reacting a terminal amine group of the polyamino acid with an epoxide group on the membrane. This makes a strong, stable bond. Preferably, the membrane incorporates pores having a diameter of at least 1,000-6,000 angstroms so that the individual polyamino acid molecules may be attached to the membrane within the pores, even at pressures below 1 bar.
In accordance with still another aspect of the present invention, the method may include the step of regeneration of the membrane after metal entrapment by utilizing helix-coil properties of polyamino acids. Thi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Preparing and regenerating a composite polymer and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Preparing and regenerating a composite polymer and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Preparing and regenerating a composite polymer and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3042078

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.