Data processing: measuring – calibrating – or testing – Measurement system in a specific environment – Earth science
Reexamination Certificate
2002-07-15
2004-03-16
McElheny, Jr., Donald E. (Department: 2857)
Data processing: measuring, calibrating, or testing
Measurement system in a specific environment
Earth science
Reexamination Certificate
active
06708117
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a method of acquiring geospatial data, rendering the data in a useful format, and disseminating selected data to users among the public via the internet or other wide ranging communications networks.
2. Description of the Prior Art
Those engaged in planning, forming policies, and undertaking diverse projects involving land use frequently resort to utilizing representations of large areas of land, such as maps showing selected relevant features of the land. The types of information conveyed by maps include boundaries, geographic features such as bodies of waters and mountains, and artificial features such as highways, bridges, and buildings. Aerial imagery has been exploited as a source of information which may be incorporated into maps. For example, satellite and aircraft reconnaissance has provided many photographic images providing detail not readily acquired in other ways.
Ready storage, transmission, reproduction, and dissemination of information has resulted from emerging electronic technologies such as electronic data processing and telecommunications advances. The latter includes cellular communications enabling the internet to become a widely used communications medium. Advent of the internet makes it practical for widely dispersed people to gain access to information from remote sources quickly and easily.
U.S. Pat. No. 6,085,152, issued to Steve Doerfel on Jul. 4, 2000, illustrates one application of data acquired from imagery being made accessible to remote locations via the internet. In this example, a platform mounted camera, which may be digital, acquires images which are transmitted to remote computer monitors or equivalent digital telecommunications devices via the internet. An illustrative application of this process is to monitor local conditions at an airport.
While unmodified images may suit some purposes, such as assessing visibility in the vicinity of an airport, they fail to address needs in other situations. For example, in the field of precision farming, it may be necessary to consider several images to obtain useful information. Plural images may possibly show many different characteristics which may possibly not be obtained from a single image or image making process. Health of a crop, for example, as reflected by sparseness or thickness of foliage may be quantified to determine where certain nutrients or water are deficient or overabundant.
In some image acquisition processes, images are arranged or taken by layers of information. Such images have equivalent geographic coverage, but capture different characteristics. For example, multispectral imagery includes layers of data taken at different frequency bands. Each image data layer conveys different information to the observer. In the example of precision farming, crop health, where this is reflected by vigor of folial growth, may possibly be determined by establishing a near infrared vegetative index or a soil adjusted vegetative index. To make this determination, the farmer must have access to both an infrared scan of the field and a near infrared scan of the same field. In this example, the ratio of light reflected in the infrared band is compared to that reflected in the near infrared band. It may be inferred from this data that the higher the ratio, the more vigorous the growth. Once a farmer has information regarding localized conditions, he or she can adjust seed types, fertilization rates, watering, and other considerations accordingly.
In addition to assuring that an image convey desired information, there remain a number of problems in creating a single image which addresses the particular needs of users of geospatial imagery. One problem area is that of limiting an image of the area of interest to the geographic bounds of that area of interests. An image including desired data such as that corresponding to a particular parcel of land, may be flagged by manipulation of a cursor and reproduced by electronic commands.
However, in the present state of the art of geospatial imagery, current methods for retrieving data are inadequate to meet many needs. A method of designating an area of interest, as captured from a database using graphic methods such as cursor manipulation over a representative map image displayed on, for example, a monitor of a computer, usually results in rectangular sections of the land parcel. In many cases, rectangular areas are not what is desired. Both natural boundaries, such as land/water interfaces and elevation variations, and artificial boundaries, such as property lines, boundaries of incorporated towns, counties, and states, separation of agricultural lands into irregular fields of different crops, and others, result in areas of interest which have irregular outer boundaries, or which otherwise differ from rectangular configurations. Therefore, it may be said that non-correspondence of the desired image with rectangular or other regular polygonal configurations presents a second problem to acquisition of imagery.
Still another problem arises from methods of initially acquiring imagery and placing corresponding data into a suitable database. Most subdivisions of land area images correspond to photographic frames. When a user designates a specific area of interest, under current conditions, he or she is constrained to accept those frames or partial frames which cover the area of interest. This leads to certain duplicated or wasteful conditions. One is that several adjacent frames may collectively cover the area of interest. A second wasteful condition is that a frame may cover a much greater area than that of the area of interest. This causes the user to receive imagery covering a considerably greater area than that desired. Consequently, a problem arises that the user will be obliged to ignore or remove unwanted coverage from images as those images have been captured in unmodified form.
A still further problem is that of merging of images from adjacent frames, particularly as this relates to aligning and matching borders. The state of the art has failed to accomplish “seamless” master or sector imaging to provide images of areas of interest which are free from unreasonable distortion due to merging of initial data acquisition images. An image of a desired area of interest is in current practiced, cobbled together from a plurality of images. This is called “mosaicing”. The final product, called a “mosaiced image”, is the result of objectionably tedious, painstaking effort.
In some prior art procedures, portions of images have been cropped or otherwise extracted, but have been placed into a rectangular data field and hence have been retained in the conventional image format.
Finally, a carefully crafted or “customized” mosaiced image is usually available on a data storage medium such as a compact disc, and is delivered by mail or courier service in a time period which may be measured in days. Data in such media is in a format created by the supplier of data, and may well not be immediately useful to the user.
Neither the above patent nor present practice in the field of geospatial imagery, taken either singly or in combination, is seen to describe the instant invention as claimed.
SUMMARY OF THE INVENTION
The present invention provides method and apparatus resulting in a geospatial imagery data service which answers selectively different data needs from a designated geographic coverage area, limits imagery data to fairly precise geographic bounds which may be irregular rather than rectangular, generates nearly seamless mosaiced images, and delivers final images almost instantaneously in digitized form over the internet to a widespread audience of potential users. No tedious manipulation is necessary to limit the delivered image to the area of interest, nor to create a single seamless image. Delivery of selected data can be nearly instantaneous if using a communications modality such as, for example, the internet. Alternative forms of data dissemination include generation and ship
Carroll Ernest A.
Gardner Christopher M.
LandOfFree
Preparing and disseminating digitized geospatial data for... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Preparing and disseminating digitized geospatial data for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Preparing and disseminating digitized geospatial data for... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3291431