Preparation of stable formulations of lipid-nucleic acid...

Drug – bio-affecting and body treating compositions – Preparations characterized by special physical form – Liposomes

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C536S023100

Reexamination Certificate

active

06410049

ABSTRACT:

FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not applicable.
FIELD OF THE INVENTION
The present invention relates to the field of cationic lipid:DNA complexes (“CLDC”). In particular, the present invention relates to lipid:nucleic acid complexes that contain (1) hydrophilic polymer; (2) nucleic acid that has been condensed with organic polycations; and (3) hydrophilic polymer and nucleic acid that has been condensed with organic polycations. The lipid:nucleic acid complexes of this invention show high transfection activity in vivo following intravenous injection and an unexpected increase in shelf life, as determined by in vivo transfection activity.
BACKGROUND OF THE INVENTION
Liposomes that consist of amphiphilic cationic molecules are useful non-viral vectors for gene delivery in vitro and in vivo (reviewed in Crystal,
Science
270: 404-410 (1995); Blaese et al.,
Cancer Gene Ther.
2: 291-297 (1995); Behr et al.,
Bioconjugate Chem.
5: 382-389 (1994); Remy et al.,
Bioconjugate Chem.
5: 647-654 (1994); and Gao et al.,
Gene Therapy
2: 710-722 (1995)). In theory, the positively charged liposomes complex to negatively charged nucleic acids via electrostatic interactions to form lipid:nucleic acid complexes. The lipid:nucleic acid complexes have several advantages as gene transfer vectors. Unlike viral vectors, the lipid:nucleic acid complexes can be used to transfer expression cassettes of essentially unlimited size. Since the complexes lack proteins, they may evoke fewer immunogenic and inflammatory responses. Moreover, they cannot replicate or recombine to form an infectious agent and have low integration frequency.
There are a number of publications that demonstrate convincingly that amphiphilic cationic lipids can mediate gene delivery in vivo and in vitro, by showing detectable expression of a reporter gene in culture cells in vitro (Felgner et al.,
Proc. Natl. Acad. Sci. USA
84: 7413-17 (1987); Loeffler et al.,
Methods in Enzymology
217: 599-618 (1993); Felgner et al.,
J. Biol. Chem.
269: 2550-2561 (1994)). Because lipid:nucleic acid complexes are on occasion not as efficient as viral vectors for achieving successful gene transfer, much effort has been devoted in finding cationic lipids with increased transfection efficiency (Behr,
Bioconjugate Chem.
5: 382-389 (1994); Remy et al.,
Bioconjugate Chem.
5: 647-654 (1994); Gao et al.,
Gene Therapy
2: 710-722 (1995)). Lipid:nucleic acid complexes are regarded with enthusiasm as a potentially useful tool for gene therapy.
Several groups have reported the use of amphiphilic cationic lipid:nucleic acid complexes for in vivo transfection both in animals, and in humans (reviewed in Gao et al.,
Gene Therapy
2: 710-722 (1995); Zhu et al.,
Science
261: 209-211 (1993); and Thierry et al.,
Proc. Natl. Acad. Sci. USA
92: 9742-9746 (1995)). However, the technical problems for preparation of complexes that have stable shelf-lives have not been addressed. For example, unlike viral vector preparations, lipid:nucleic acid complexes are unstable in terms of particle size (Behr,
Bioconjugate Chem.
5: 382-389 (1994); Remy et al.,
Bioconjugate Chem.
5: 647-654 (1994); Gao et al.,
Gene Therapy
2: 710-722 (1995)). It is therefore difficult to obtain homogeneous lipid:nucleic acid complexes with a size distribution suitable for systemic injection. Most preparations of lipid:nucleic acid complexes are metastable. Consequently, these complexes typically must be used within a short period of time ranging from 30 minutes to a few hours. In recent clinical trials using cationic lipids as a carrier for DNA delivery, the two components were mixed at the bed-side and used immediately (Gao et al.,
Gene Therapy
2: 710-722 (1995)). The structural instability along with the loss of transfection activity of lipid:nucleic acid complex with time have been challenges for the future development of lipid-mediated gene therapy.
SUMMARY OF THE INVENTION
The present invention provides a novel method of preparing cationic lipid:nucleic acid complexes that have increased shelf life. In one embodiment, these complexes are prepared by contacting a nucleic acid with an organic polycation, to produce a condensed or partially condensed nucleic acid. The condensed nucleic acid is then combined with an amphiphilic cationic lipid plus a neutral helper lipid such as cholesterol in a molar ratio from about 2:1 to about 1:2, producing the lipid:nucleic acid complex. Optionally, a hydrophilic polymer is subsequently added to the lipid:nucleic acid complex. Alternatively, the hydrophilic polymer is added to a lipid:nucleic acid complex comprising nucleic acid that has not been not condensed. These lipid:nucleic acid complexes have an increased shelf life, e.g., when stored at 22° C. or below, as compared to an identical lipid:nucleic acid complex in which the nucleic acid component has not been contacted with the organic polycation and/or in which the lipid:nucleic acid complex has not been contacted with a hydrophilic polymer.
In a particularly preferred embodiment, the polycation is a polyamine, more preferably a polyamine such as spermidine or spermine.
In another preferred embodiment, the lipid:nucleic acid complexes are prepared by combining a nucleic acid with an amphiphilic cationic lipid and then combining the complex thus formed with a hydrophilic polymer. This lipid:nucleic acid complex has an increased shelf life, e.g., when stored at 22° C. or below as compared to an identical complex that has not been combined with the hydrophilic polymer.
In one embodiment, the hydrophilic polymer is selected from the group consisting of polyethylene glycol (PEG), polyethylene glycol derivatized with phosphatidyl ethanolamine (PEG-PE), polyethylene glycol derivatized with tween, polyethylene glycol derivatized with distearoylphosphatidylethanolamine (PEG-DSPE), ganglioside G
Ml
and synthetic polymers.
In one embodiment, the lipid:nucleic acid complex is lyophilized.
In any of the methods and compositions of this invention, the nucleic acid can be virtually any nucleic acid, e.g., a deoxyribonucleic acid (DNA) or a ribonucleic acid (RNA), and peptide nucleic acid (PNA) etc., and is most preferably a DNA. In a particularly preferred embodiment, the DNA is an expression cassette capable of expressing a polypeptide in a cell transfected with the lipid:nucleic acid complex.
In one embodiment the lipid:nucleic acid complexes are formed by first forming a liposome, and then combining the formed liposome with condensed or partially condensed nucleic acid to form a lipid:nucleic acid complex. Optionally, the lipid:nucleic acid complex is subsequently contacted with a hydrophilic polymer. The liposomes can alternatively be combined with an uncondensed nucleic acid to form a lipid:nucleic acid complex to which a hydrophilic polymer (e.g., PEG-PE) is later added. A lipid:nucleic acid complex prepared by the combination of nucleic acid and a liposome contacted with a hydrophilic polymer can be subsequently combined with additional hydrophilic polymer. In a preferred embodiment, the lipid and nucleic acid are combined in a ratio ranging from about 1 to about 20, more preferably from about 4 to about 16, and most preferably from about 8 to about 12 nmole lipid:&mgr;g nucleic acid. The lipid and hydrophilic polymer are combined in a molar ratio ranging from about 0.1 to about 10%, more preferably from about 0.3 to about 5% and most preferably from about 0.5% to about 2.0% (molar ratio of hydrophilic polymer to cationic lipid of the complex).
It will be appreciated that a targeting moiety (e.g., an antibody or an antibody fragment) can be attached to the lipid and/or liposome before or after formation of the lipid:nucleic acid complex. In a preferred embodiment, the targeting moiety is coupled to the hydrophilic polymer (e.g., PEG), where the targeting moiety/hydrophilic polymer is subsequently added to the lipid:nucleic acid complex. This provides a convenient means for modifying the targeting specificity of an otherwise generic lipid:nucleic acid complex.
In a particul

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Preparation of stable formulations of lipid-nucleic acid... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Preparation of stable formulations of lipid-nucleic acid..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Preparation of stable formulations of lipid-nucleic acid... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2904428

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.