Preparation of organopolysiloxane gum

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – From silicon reactant having at least one...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C528S037000, C366S301000, C556S460000

Reexamination Certificate

active

06288196

ABSTRACT:

This invention relates to a process for continuously preparing an organopolysiloxane gum which has a minimized content of hydroxyl in the terminal unit so that the gum is suitable in various silicone rubber compositions.
BACKGROUND OF THE INVENTION
Because of its improved characteristics including weather resistance, electrical properties, compression set, heat resistance, and low-temperature resistance, silicone rubber is widely used in a variety of fields including electronic equipment, automobiles, buildings, medical and food fields. Illustrative applications include rubber contacts used as rubber contact keys in remote controllers, type writers, computer keyboards, and musical instruments, building gaskets, rolls in copiers and printers (e.g., fixing rolls, developing rolls, transfer rolls, charging rolls, and paper feed rolls), vibration dampers in audio equipment, and compact disc packing in computers. As the demand for silicone rubber is increasing, the high productivity manufacture of silicone rubber at a low cost is desired.
The continuous preparation of organopolysiloxane is effective to meet such needs. JP-A 53-99300 corresponding to U.S. Pat. No. 4,128,568 discloses a process for continuously preparing a highly viscous organopolysiloxane in the presence of a basic and/or acidic reaction catalyst. It is described that viscous organopolysiloxanes having a viscosity of 10 to several millions of centipoises can be prepared, but no reference is made to organopolysiloxanes having a higher viscosity, that is, in the gum region.
The terminal unit structure of organopolysiloxane depends on the structure of a terminal stopper used in the polymerization process. However, the process for preparing organopolysiloxane generally has the drawback that a trace amount of water in the reactant can also function as the terminal stopper. The resulting organopolysiloxane has hydroxyl groups introduced into the terminal unit, departing from the desired terminal unit. When such a high molecular weight organopolysiloxane gum having terminal hydroxyl groups is mixed with a reinforcing agent such as silica to formulate a silicone rubber compound, the compound gives rise to a crepe hardening phenomenon with the lapse of time because of the interaction between hydroxyl groups at the end of organopolysiloxane gum and hydroxyl groups on silica surface. Prior to use, the silicone rubber compound having undergone crepe hardening must be restored to the initial state by applying strong shear forces in a twin-roll mill or another kneader.
In the application where organopolysiloxane gum is used as a base component of a silicone rubber compound, it is desired to design the organopolysiloxane gum such that its terminal unit consists of a triorganosilyl group. Nevertheless, in the currently available gums, hydroxyl groups are introduced in the terminal unit owing to incidental factors as mentioned above. For the preparation of organopolysiloxane gum, it was needed to reduce the content of hydroxyl groups.
One process for reducing the hydroxyl group content is disclosed in JP-A 60-202124 corresponding to U.S. Pat. No. 4,551,515. For removing a trace amount of water from the starting reactants such as a cyclopolysiloxane and a low molecular weight, linear organopolysiloxane as the terminal stopper, the reactants are previously dried using a desiccant such as molecular sieve. However, such pretreatment renders the overall process complicated, and there is a need for periodic replacement of the desiccant.
Another technique of reducing hydroxyl groups in organopolysiloxane terminal units is by adding a triorganohalosilane and a hexaorganodisilazane for neutralizing the alkali catalyst as disclosed in JP-A 60-49033 corresponding to U.S. Pat. No. 4,563,513. This technique is successful in reducing hydroxyl groups, but increases the number of steps and raises the problem of metal equipment corrosion due to the use of halosilane.
Therefore, for the preparation of organopolysiloxane gum (or organopolysiloxane having a high degree of polymerization), it is desired to have a more efficient technique capable of effectively reducing the content of hydroxyl groups in the terminal unit.
SUMMARY OF THE INVENTION
An object of the invention is to provide a novel and improved process for continuously preparing an organopolysiloxane gum having a minimized content of hydroxyl groups in the terminal unit and of consistent quality and low cost through simplified steps and in a highly productive manner.
The inventor has found that an organopolysiloxane gum can be continuously prepared by the steps of (I) mixing (A) at least one cyclopolysiloxane of the formula (1) to be defined below with (B) an end capping agent, (II) feeding the mixture of components (A) and (B) to a self-cleaning continuous polymerization reactor, continuously mixing (C) an alkaline polymerization catalyst with the mixture, and effecting polymerization at a temperature of 100 to 250° C. and under subatmospheric pressure, and (III) continuously adding a neutralizing agent to the reaction mixture of step (II), thereby terminating the polymerization reaction. Since the reaction product resulting from step (III) contains the cyclopolysiloxane and volatile components as polymerization residues, step (III) is preferably followed by the step (IV) of continuously removing the cyclopolysiloxane and volatile components from the reaction product. In this way, an organopolysiloxane gum of consistent quality and substantially free of hydroxyl groups in the terminal unit can be prepared by a simplified process without a need for pretreatment. The organopolysiloxane gum can be prepared at a high productivity and low cost without concern about equipment corrosion.
Accordingly the invention provides a process for continuously preparing an organopolysiloxane gum, comprising the steps of:
(I) mixing (A) at least one cyclopolysiloxane of the following general formula (1):
 wherein R
1
and R
2
are independently substituted or unsubstituted monovalent hydrocarbon groups, and n is an integer of at least 3, with (B) an end capping agent,
(II) feeding the mixture of components (A) and (B) of step (I) to a self-cleaning continuous polymerization reactor, continuously feeding and mixing (C) an alkaline polymerization catalyst with the mixture, and effecting polymerization at a temperature of 100 to 250° C. and under subatmospheric pressure, and
(III) continuously adding a neutralizing agent to the reaction mixture of step (II) in a sufficient amount to neutralize the catalyst, thereby terminating the polymerization reaction.


REFERENCES:
patent: 4128568 (1978-12-01), Büchner et al.
patent: 4551515 (1985-11-01), Herberg et al.
patent: 4599437 (1986-07-01), Manfred
patent: 4739026 (1988-04-01), Riederer et al.
patent: 3914912 (1990-11-01), None
patent: 1174219 (1969-12-01), None
patent: 60-202124 (1985-10-01), None
Derwent English Abstract of DE 3914912.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Preparation of organopolysiloxane gum does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Preparation of organopolysiloxane gum, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Preparation of organopolysiloxane gum will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2537471

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.