Preparation of chemically reactive polysaccharides

Organic compounds -- part of the class 532-570 series – Organic compounds – Carbohydrates or derivatives

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C536S055100, C536S030000, C536S045000, C536S052000, C536S048000, C536S102000, C536S123000, C536S124000, C536S058000

Reexamination Certificate

active

06455691

ABSTRACT:

The present invention relates to the preparation of chemically reactive polysaccharides and relates more particularly, but not exclusively, to the preparation of chemically reactive forms of starch and cellulose.
Starch is one of the most widely diffused organic substances occurring in nature. It is found in larger quantities in some families of plants than others. For example, it is always found in (great abundance in the seeds of cereals. When extracted and separated from the plant material in which it occurs, starch is in the form of granules. These starch granules contain components which are of interest as chemical intermediates, particularly amylose which has a highly linear structure and the branched chain amylopectin. These are polysaccharides which, when reacted with long chain fatty acid chlorides, form waxes which may be of use in food related applications. However, in order to be able to use the polysaccharide components (e.g. amylose or amylopectin) of starch as chemical intermediates it is generally firstly necessary to convert the starch granules to a form in which the reaction will take place.
As opposed to starch which is comprised of both branched and linear components, cellulose is a linear molecule. Cellulose is the chief constituent of plants and is the material which is present in cell walls and other structural tissues. Cotton is almost pure cellulose and the man made fibre rayon is made from cellulose. Cellulose generally requires conversion into a more reactive form before it may be used for forming chemical derivatives.
U.S. Pat. No. 4,278,790 (McCormick) discloses a method for making homogenous solutions of cellulose in lithium chloride and N,N-dimethylacetamide (DMAc) and the use of such solutions in forming derivatives. The only Example of the dissolution requires a temperature of about 150° C.
In a paper entitled “Homogenous solution reactions of cellulose, chitin and other polysaccharides” (ACS symposium series (1980) vol. 121 pp 371-380), McCormick et al disclose the formation of solutions of cellulose chitin, amylose, amylopectin and dextran by adding a lithium salt (LiCl, LiBr, or LiNO
3
) to N,N-dimethylacetamide followed by addition of the polysaccharide. The dissolution method appears to be that of U.S. Pat. No.4,278,790 as a further paper entitled “Solution studies of Cellulose in Lithium Chloride and N,N-dimethylacetamide” (Macromolecules 1985, 18, 2394-2401) describes both the technique of U.S. Pat. No. 4,278, 790 and a new technique which enables a cellulose solution to be produced at room temperature rather than heating to 150° C. This involves pre-treating the cellulose before it is added to the LiCl/DMAc solution. The pre-treatment involves the steps of swelling cellulose overnight in deionised water and then removing excess water followed by four solvent exchanges with dried methanol and a further five exchanges with DMAc followed by drying. The swollen cellulose can then be dissolved at room temperature in LiCl/DMAc solution and used to form chemical derivatives. McCormick et al report that they have found other lithium salts including bromide, iodide, nitrate and sulphate to be ineffective.
In a later paper (Macromolecules 1990, 23, 3606-3610), McCormick et al disclose a process in which cellulose powder is slurried overnight in water and then vacuum filtered. Subsequently the cellulose is treated by the steps of adding methanol, stirring for one hour and filtering. The steps of this procedure are repeated three times followed by five repetitions of a similar procedure with DMAc. The cellulose was then dissolved in LiCl/DMAc at 80° C. followed by stirring while allowing to cool to room temperature. Complete dissolution was achieved in about 20 minutes.
U.S. Pat. No. 4,352,770 discloses processes for forming a shaped cellulose product from LiCl solutions. With the exception of Example 10 of that specification, all other Examples involve a separate pre-treatment to activate the cellulose prior to dissolution. Example 10 of that specification utilises a so-called recovery liquid containing 20 g LiCl, 200 g DMAc and 500 g water. The recovery liquid was fractionally distilled to remove 450, g water and 10 g of pulp were added. The mixture was then further distilled to yield a suspension which contained less than 1% water and in which the cellulose fibres were still whole. After allowing the mixture to stand and cool for six hours, a clear solution bias obtained. Such a solution could be used to form a shaped product. U.S. Pat. No. 4,352,770 also discloses that cellulose which has not been activated will only dissolve in a solution of lithium chloride in DMAc at 150° C. or higher, but that at such temperatures the solution becomes discoloured and significant degradation occurs.
According to the present invention there is provided a method of forming a chemically reactive polysaccharide in an anhydrous medium comprising the steps of:
(1) forming a swollen form of the polysaccharide by heating the polysaccharide in the presence of water;
(2) forming a solvent/polysaccharide/water mixture by adding a solvent to the swollen polysaccharide in water, the solvent being one which has a moiety with the structure
(3) forming an anhydrous solvent/polysaccharide mixture by heating the solvent/polysaccharide/water mixture to remove water while adding further amounts of solvent to maintain a volume of liquid such that the polysaccharide does not settle out and to ensure that all the water is removed; and
(4) dissolving at least 1% by weight of a lithium halide selected from the group consisting of lithium chloride and lithium bromide and mixtures thereof in the anhydrous solvent/polysaccharide mixture.
The process of the invention allows polysaccharides to be converted to form part of a true anhydrous system in which they may be used as chemical intermediates can be simplified and carried out in a single vessel without use of high temperatures which cause degradation. The process of step 4 results in anhydrous mixture. i.e. one including less than about 0.05% free water although it will be appreciated that additionally water may remain bound within the polysaccharide. The process avoids the high temperatures of the process disclosed by McCormick in U.S. Pat. No 4,278,790 and the need for any complicated separate pre-treatment and ensures the absence of water in the material used for the formation of chemical derivatives of the particular polysaccharide.
Polysaccharides which can be converted by the method of the invention to a chemically reactive form include starch, cellulose and chitin but a polysaccharide which contains carboxyl moieties such as pectin is not convertible by the method of this invention.
Sources of starch which may be used in the method of the invention are potato, maize, wheat, rice, sago, and commercially available “High Amylose Starch” (e.g. Hylon VII). Suitable sources of cellulose include cotton linters and straw.
Among the solvents having the moiety
are N,N-dimethylacetamide, N,N-dimethylformamide and N-methylpyrrolidinone. A single solvent is preferred as mixtures of solvents may hinder the removal of water or azeotropic mixtures may be formed which while effective in removing water are impossible to separate in order to recover solvent for recycling. It is difficult to predict how tertiary mixtures containing two of the preferred solvents and water will behave in the presence of another interactive material, the polysaccharide. The preferred solvent is N,N-dimethylacetamide as it separates easily from water and causes little or no degradation of the polysaccharide. Degradation in some cases could be advantageous in producing products of different characteristics.
Heating the polysaccharide in the presence of solvent/water in step 1 results in less effective swelling of the polysaccharide although we do not preclude the possibility of step 1 being effected with a solvent/water mixture.
a concentration of 1 to 15% by weight of the polysaccharide is generally satisfactory for step 1. It may however be that, for certain poly

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Preparation of chemically reactive polysaccharides does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Preparation of chemically reactive polysaccharides, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Preparation of chemically reactive polysaccharides will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2914087

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.