Preparation of 4-bromoaniline derivatives

Organic compounds -- part of the class 532-570 series – Organic compounds – Amino nitrogen containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C548S240000, C548S247000, C558S418000

Reexamination Certificate

active

06388135

ABSTRACT:

The present invention provides a process for preparing 4-bromoaniline derivatives.
4-Bromoaniline derivatives are useful compounds which are used as intermediates in chemical industry. They are suitable, for example, for preparing active compounds used in the field of crop protection, or for preparing pharmaceutically active compounds. WO 99/58509, for example, describes processes for preparing isoxazolin-3-ylacylbenzenes in which 4-bromoaniline derivatives are employed as intermediates for preparing herbicidally active compounds. WO 98/31681 describes these active compounds (2-alkyl-3-(4,5-dihydroisoxazol-3-yl)acylbenzenes) as herbicidally active compounds.
It is known from the literature that the selective bromination of anilines in the para position is impossible, or possible only with difficulty (Houben-Weyl 5/4, 241, 274 ff). In general, bromination with elemental bromine is not selective, but frequently associated with the formation of considerable amounts of dibromo compounds. According to experience, the selectivities for monobromo to dibromo compounds are in an order of magnitude of about 9:1, i.e. the proportion of undesired dibromo compounds is about 10%. Thus, only with expensive reagents, such as tetrabutylammonium tribromide, the compound 4-bromo-2-(4,5-dihydroisoxazol-3-yl)-3-methylaniline, for example, was obtained at −30° C. in a yield of about 50% (cf. WO 99/58509).
It is an object of the present invention to provide an alternative process for preparing 4-bromoaniline derivatives. The preparation process described in WO 99/58509 for the 4-bromo-2-(4,5-dihydroisoxazol-3-yl)-3-methylaniline derivatives gives unsatisfactory yields and an unsatisfactory purity of the products. Accordingly, the process described in WO 99/58509 is only of limited use for the industrial preparation of such compounds.
We have found that this object is achieved by a process for preparing 4-bromoaniline derivatives of the formula I
where:
R
1
is C
1
-C
6
-alkyl, C
1
-C
6
-haloalkyl, C
1
-C
6
-alkoxy, C
1
-C
6
-haloalkoxy, C
3
-C
8
-cycloalkyl, halogen
R
2
is C
1
-C
6
-alkyl, C
1
-C
6
-alkoxy, C
3
-C
8
-cycloalkyl, C
2
-C
6
-alkenyl, cyano or a heterocyclic radical,
which comprises reacting a compound of the formula II
in which R
1
and R
2
are as defined above with a brominating agent in the solvent pyridine or in a solvent mixture comprising at least 55% by wight of pyridine.
With the aid of the process according to the invention, it is possible to obtain the aniline derivatives of the formula I in higher yields than with the prior-art preparation processes. Thus, for example, the compound 4-bromo-2-(4,5-dihydroisoxazol-3-yl)-3-methylaniline can be obtained by the process described in WO 99/58509 (cf. Example 10 therein) in a yield of only 47%, whereas the yield in the process according to the invention is at least 60%, preferably at least 70% or 80%, and in particular at least 90%.
Moreover, the compounds of the formula I are obtained in higher purity. Here, the bromination takes place with high selectivity in the 4-position of the phenyl ring. The selectivity (ratio of monobromo to dibromo compound) is at least 92:8, in particular at least 95:5. Surprisingly, the proportion of impurities, such as, for example, dibromides (these dibromides are derivatives of the formula I which are substituted in the 5- or 6-position by a further bromine atom) which are difficult to remove from the resulting reaction mixture, or whose removal requires relatively high technical expenditure, is less than 5%. Accordingly, the number of further additional purification steps for isolation and work-up of the compounds I prepared by the process according to the invention can be reduced. This is particularly advantageous for the industrial production of the compounds I, since a more efficient and more cost-effective process can be provided.
Owing to the high selectivity and the small proportion of dibromo compounds, it is possible, if appropriate, to use the reaction product even without additional purification for the next process steps for further conversion into suitable end products.
C
1
-C
6
-Alkyl is a straight-chain or branched alkyl group having 1-6 carbon atoms, such as, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert.-butyl, n-pentyl or n-hexyl; preference is given to C
1
-C
4
-alkyl, such as, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl or tert.-butyl.
C
1
-C
6
-haloalkyl is a straight-chain or branched C
1
-C
6
-alkyl group as mentioned above which is partially or fully substituted by fluorine, chlorine, bromine and/or iodine, for example chloromethyl, dichloromethyl, trichloromethyl, fluoromethyl, difluoromethyl, trifluoromethyl, chlorofluoromethyl, dichlorofluoromethyl, chlorodifluoromethyl, 2-fluoroethyl, 2-chloroethyl, 2-bromoethyl, 2-iodoethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, 2-chloro-2-fluoroethyl, 2-chloro-2,2,-difluoroethyl, 2,2-dichloro-2-fluoroethyl, 2,2,2-trichloroethyl, pentafluoroethyl, 2-fluoropropyl, 3-fluoropropyl, 2,2-difluoropropyl, 2,3-difluoropropyl, 2-chloropropyl, 3-chloropropyl, 2,3-dichloropropyl, 2-bromopropyl, 3-bromopropyl, 3,3,3-trifluoropropyl, 3,3,3-trichloropropyl, 2,2,3,3,3-pentafluoropropyl, heptafluoropropyl, 1-(fluoromethyl)-2-fluoroethyl, 1-(chloromethyl)-2-chloroethyl, 1-(bromoethyl)-2-bromoethyl, 4-fluorobutyl, 4-chlorobutyl, 4-bromobutyl, nonafluorobutyl, 5-fluoropentyl, 5-chloropentyl, 5-bromopentyl, 5-iodopentyl, undecafluoropentyl, 6-fluorohexyl, 6-chlorohexyl, 6-bromohexyl, 6-iodohexyl and dodecafluorohexyl; perference is given to C
1
-C
4
-haloalkyl, such as chloromethyl, dichloromethyl, trichloromethyl, fluoromethyl, difluoromethyl, trifluoromethyl, chlorofluoromethyl, dichlorofluoromethyl, chlorodifluoromethyl, 2-fluoroethyl, 2-chloroethyl, 2-bromoethyl, 2-iodoethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, 2-chloro-2-fluoroethyl, 2-chloro-2,2,-difluoroethyl, 2,2-dichloro-2-fluoroethyl, 2,2,2-trichloroethyl, pentafluoroethyl, 2-fluoropropyl, 3-fluoropropyl, 2,2-difluoropropyl, 2,3-difluoropropyl, 2-chloropropyl, 3-chloropropyl, 2,3-dichloropropyl, 2-bromopropyl, 3-bromopropyl, 3,3,3-trifluoropropyl, 3,3,3-trichloropropyl, 2,2,3,3,3-pentafluoropropyl, heptafluoropropyl, 1-(fluoromethyl)-2-fluoroethyl, 1-(chloromethyl)-2-chloroethyl, 1-(bromomethyl)-2-bromoethyl, 4-fluorobutyl, 4-chlorobutyl, 4-bromobutyl, or nonafluorobutyl;
C
1
-C
6
-Alkoxy is a straight-chain or branched alkyl group having 1-6 carbon atoms, such as, for example, methoxy, ethoxy, n-propyloxy, isopropyloxy, n-butyloxy, isobutyloxy, tert.-butyloxy, n-pentyloxy or n-hexyloxy; preference is given to C
1
-C
4
-alkoxy, such as, for example, methoxy, ethoxy, n-propyloxy, isopropyloxy, n-butyloxy, isobutyloxy or tert.-butyloxy;
C
1
-C
6
-haloalkoxy is a straight-chain or branched C
1
-C
6
-alkoxy group as mentioned above which is partially or fully substituted by fluorine, chlorine, bromine and/or iodine, for example, fluoromethoxy, difluoromethoxy, trifluoromethoxy, chlorodifluoromethoxy, bromodifluoromethoxy, 2-fluoroethoxy, 2-chloroethoxy, 2-bromomethoxy, 2-iodoethoxy, 2,2-difluoroethoxy, 2,2,2-trifluoroethoxy, 2-chloro-2-fluoroethoxy, 2-chloro-2,2,difluoroethoxy, 2,2-dichloro-2-fluoroethoxy, 2,2,2-trichloroethoxy, pentafluoroethoxy, 2-fluoropropoxy, 3-fluoropropoxy, 2-chloropropoxy, 3-chloropropoxy, 2-bromopropoxy, 3-bromopropoxy, 2,2-difluoropropoxy, 2,3-difluoropropoxy, 2,3-dichloropropoxy, 3,3,3-trifluoropropoxy, 3,3,3-trichloropropoxy, 2,2,3,3-pentafluoropropoxy, heptafluoropropoxy, 1-(fluoromethyl)-2-fluoroethoxy, 1-(chloromethyl)-2-chloroethoxy, 1-(bromomethyl)-2-bromoethoxy, 4-fluorobutoxy, 4-chlorobutoxy, 4-bromobutoxy, nonafluorobutoxy, 5-fluoropentoxy, 5-chloropentoxy, 5-bromopentoxy, 5-iodopentoxy, undecafluoropentoxy, 6-fluorohexoxy, 6-chlorohexoxy, 6-bromohexoxy, 6-iodohexoxy or dodecafluorohexoxy; perference is given to C
1
-C
4
-haloalkoxy, such as fluoromethoxy, difluoromethoxy, trifluoromethoxy, chlorodifluoromethoxy, bromodifluoromethoxy, 2-fluoroethoxy, 2-chloroethoxy, 2-bromomethoxy, 2-iodoethoxy, 2,2-

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Preparation of 4-bromoaniline derivatives does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Preparation of 4-bromoaniline derivatives, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Preparation of 4-bromoaniline derivatives will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2838886

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.