Preparation and use of photopolymerized microparticles

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Compositions to be polymerized by wave energy wherein said...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C522S080000, C522S087000, C522S088000, C522S089000, C522S182000, C424S486000, C424S489000

Reexamination Certificate

active

06403672

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates generally to polymer particles and methods of making and using the same.
Small (micron- and nano-sized) polymer particles are useful for many applications, including pharmaceutical uses. Polymer microparticles are useful for injectable and implantable devices because they have a long circulation time in the body and are efficient drug, enzyme, and protein carriers (Tom, J. W. et al. (1993), “Applications of Supercritical Fluids in the Controlled Release of Drugs,” in
Supercritical Fluid Engineering Science
, pp. 238-257). Crosslinked polymer microparticles have material property benefits over linear polymer particles including improved mechanical strength, greater control of transport properties, material property adjustability and dimensional stability. Some applications of cross-linked polymers are listed in Cooper, A. L. and Holmes, A. B. (1998) Proceedings of the 5
th
Meeting of Supercritical Fluids Materials and Natural Products Processing, pp. 843-848. Polymer microparticles (both linear and crosslinked) have been used in applications such as dental composites, biostructural fillers and controlled release devices. Some applications of synthetic bone composites are listed in Popov, V. K. et al. (1998) Proceedings of the 5
th
Meeting of Supercritical Fluids Materials and Natural Products Processing, pp. 45-50.
Controlled release devices are useful in many applications, from medical to agricultural (Langer, R. (1993), Polymer-Controlled Drug Delivery Systems,” Acc. Chem. Res. 26:537-542; U.S. Pat. No. 5,043,280). Controlled release delivery systems for drugs have at a wide variety of advantages over conventional forms of drug administration. Some of these advantages include: decreasing or eliminating the oscillating drug concentrations found with multiple drug administrations; allowing the possibility of localized delivery of the drug to a desired part of the body; preserving the efficacy of fragile drugs; reducing the need for patient follow-up care; increasing patient comfort and improving patient compliance. (Langer, R. (1990), “New Methods of Drug Delivery,” Science 249:1527-1533).
Current polymer microparticle manufacturing techniques all suffer from one or more disadvantages. For example, the spray drying technique usually requires evaporation of solvent in hot air. The high temperatures used can degrade sensitive drugs and polymers. In thermal polymerization, monomer is heated to induce polymerization. Again, the high temperatures used can cause degradation (including lowering the activity of biologically active substances).
Emulsion and suspension polymerizations (see, for example, U.S. Pat. No. 5,603,960 (O'Hagan., et al.)) involve combinations of solvents, emulsifiers, and surfactants where dispersed islands of monomer polymerize through chemical reaction in a sea of solvent. These methods often involve operation at high temperatures and thus have the problems discussed above, use large volumes of solutions that are often environmentally unfriendly, and permit only minimal control over particle size and morphology.
A number of different techniques have been developed to form small particles of polymers using the solvent power of supercritical fluids. Supercritical fluids have liquid-like densities, very large compressibilities, viscosities between those of liquids and gases, and diffusion coefficients that are higher than liquids. Due to the high compressibility, the density (and solvent power) of a supercritical fluid can be adjusted between gas- and liquid-like extremes with moderate changes in pressure (Debenedetti, P. G. et al. (1993), “Rapid Expansion of Supercritical Solutions (RESS): Fundamentals and Applications,” Fluid Phase Equilibria 82:311-321).
The Rapid Expansion of Supercritical Solution (RESS) technique has been used to form small particles of poly(L-lactic acid) (Debenedetti, P. G. et al. (1993), “Supercritical Fluids: A New Medium for the Formation of Particles of Biomedical Interest,” Proceed. Interm. Symp. Control Rel. Bioact. Mater. 20:141-142) and particles of poly(DL-lactic acid) with embedded lovastatin (Tom, J. W. et al. (1993), “Applications of Supercritical Fluids in the Controlled Release of Drugs,” in
Supercritical Fluid Engineering Science
, pp. 238-257). In the RESS technique, particles of polymer may be made when a polymer is dissolved in a supercritical fluid (usually carbon dioxide) followed by rapid expansion of the fluid. This technique is limited in applicability to compounds that are soluble in the supercrifical fluid. Since most drugs are not soluble in supercritical fluids and most polymers have very low solubility in supercritical fluids, the RESS process is not broadly applicable for drug encapsulation (McHugh, M. and Krukonis, V. (1994)
Supercritical Fluid Extraction
, Butterworth-Heinemann).
In the Precipitation by a Compressed Antisolvent (PCA) technique (also known as the Gas Antisolvent technique), a solid of interest is dissolved in a solvent and the resulting solution is sprayed into a compressed antisolvent (see, for example, U.S. Pat. Nos. 5,833,891 and 5,874,029). In this technique, the antisolvent and solvent are soluble, but the solid of interest is not soluble in the antisolvent. The antisolvent is believed to extract the solvent, precipitating particles of the solid of interest (Randolph, T. W. et al. (1993)Biotech. Prog. 9:429-435). Microparticles of insulin have reportedly been formed using this technique (Yeo, S.-D. et al. (1993), “Formation of Microparticulate Protein Powders Using a Supercritical Fluid Antisolvent,” Biotech. Bioeng. 41:341-346) and polymer microparticles have been formed using polymer starting materials (Bodmeier, R. et al. (1995), “Polymeric Microspheres Prepared by Spraying into Compressed Carbon Dioxide,” Pharm. Res. 12(8):1211-1217; U.S. Pat. Nos. 5,833,891; 5,874,029).
There is a need for polymer particles with low residual solvent levels, high additive encapsulation efficiencies, and processes of making polymer particles that allow control of particle size and morphology, with low operating temperatures and efficient bulk production capability. Formation of polymer particles with erodable surfaces are also needed for controlled release of drugs, for example. In particular, highly crosslinked polymer networks with erodable surfaces are desired. In addition, there is a need for a process that produces polymer particles in situ from polymer precursors such as monomers or oligomers.
BRIEF SUMMARY OF THE INVENTION
In a general description of the invention, a method of forming polymer particles comprising exposing a composition comprising at least one polymer precursor, a solvent or solvent mixture, and an antisolvent or antisolvent mixture to photoradiation under conditions whereby particles are formed is provided. If the precursor is not photosensitive, at least one photoinitiator is present in the composition. The solvent is not required if the polymer Sri precursor is liquid or liquifiable. If used, the solvent is chosen so that the polymer precursor is soluble in the solvent at the concentrations used, and the antisolvent and solvent are soluble in each other at the concentrations used. The polymer precursor is preferably insoluble in the antisolvent, but as long as nucleation and particle formation occur, any solubility condition may be present. Bioactive materials such as drugs may also be included in the composition.
Also provided is a method of forming polymer particles comprising contacting a solution comprising a solvent or solvent mixture and at least one polymer precursor with an antisolvent or antisolvent mixture under conditions whereby particles are generated; and exposing said particles to photoradiation, whereby polymer particles are formed. Preferably the polymer precursor is insoluble in the antisolvent or antisolvent mixture.
Also provided are polymer particles prepared by the methods of the invention that are between about 0.001 &mgr;m to about 100 &mgr;m in diameter. Linear and crosslinked polymer partic

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Preparation and use of photopolymerized microparticles does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Preparation and use of photopolymerized microparticles, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Preparation and use of photopolymerized microparticles will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2954667

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.